Abstract:
A control method for optimizing an operation of a power plant having generating units during a selected operating period subdivided so to include regular intervals within which each of the generating units comprises one of an on-condition and an off-condition. The control method may include: determining a preferred case for each of the competing operating modes for the intervals; based upon the preferred cases, selecting proposed turndown operating sequences for the selected operating period; determining a shutdown operation for each of the generating units comprising the off-condition for one or more intervals during the selected operating period and, therefrom, calculating a shutdown economic outcome; determining a turndown operation for each of the generating units comprising the on-condition for one or more intervals during the selected operating period and, therefrom, calculating a turndown economic outcome; calculating a sequence economic outcome for each of the proposed turndown operating sequences; and comparing the sequence economic outcomes.
Abstract:
A method for operating a sensor in a thermal generating unit. The method may include the steps of: defining lookback periods, wherein the lookback periods each include previous periods of operation for the thermal generating unit, the lookback periods including at least a first lookback period and a second lookback period; receiving a first dataset regarding readings for the sensor during the first lookback period; receiving a second dataset regarding the readings the sensor during the second lookback period; performing a first check on the first dataset and obtaining therefrom a first result; performing a second check on the second dataset and obtaining therefrom a second result; and determining a likelihood as to whether the sensor is malfunctioning based on the first and the second results.
Abstract:
Embodiments of the disclosure relate to systems and methods of forecasting power plant performance. In one embodiment, a system can include a computer that is configured to use a calibrated physics-based simulation model to generate training data. The training data is used by the computer to effectuate a surrogate neural network model. Furthermore, the computer is configured to receive a periodic performance index. The periodic performance index, which is indicative of dynamic changes in one or more operating parameters of the power plant, is processed in combination with the surrogate neural network model by the computer for forecasting one or more performance parameters of the power plant.
Abstract:
A control method for optimizing or enhancing an operation of a power plant that includes thermal generating units for generating electricity. The power plant may include multiple possible operating modes differentiated by characteristics of operating parameters. The method may include tuning a power plant model so to configure a tuned power plant model. The method may further include simulating proposed operating modes of the power plant with the tuned power plant model. The simulating may include a simulation procedure that includes: defining a second operating period; selecting the proposed operating modes from the possible operating modes; with the tuned power plant model, performing a simulation run for each of the proposed operating modes whereby the operation of the power plant during the second operating period is simulated; and obtaining simulation results from each of the simulation runs.
Abstract:
Systems and methods for power plant data reconciliation are provided. According to one embodiment of the disclosure, a system may include a controller and a processor in communication with the controller. The processor may be configured to run a power plant under a plurality of operational conditions. While the power plant is running, the processor may be configured to automatically collect operational data associated with the power plant. The collected data may be stored in a predefined location. Furthermore, the processor may be configured to select stable data from the operational data to coincide with output data associated with a power plant model. One or more parameters of the power plant model may be modified, and at least one difference may be minimized between the output data associated with the power plant model and a measured value in the power plant operational data. At least one control action for a power plant component using the power plant model may be determined
Abstract:
A control method for optimizing an operation of a power plant having generating units during a selected operating period subdivided so to include regular intervals within which each of the generating units comprises one of an on-condition and an off-condition. The control method may include: determining a preferred case for each of the competing operating modes for the intervals; based upon the preferred cases, selecting proposed turndown operating sequences for the selected operating period; determining a shutdown operation for each of the generating units comprising the off-condition for one or more intervals during the selected operating period and, therefrom, calculating a shutdown economic outcome; determining a turndown operation for each of the generating units comprising the on-condition for one or more intervals during the selected operating period and, therefrom, calculating a turndown economic outcome; calculating a sequence economic outcome for each of the proposed turndown operating sequences; and comparing the sequence economic outcomes.
Abstract:
A control method for optimizing or enhancing an operation of a power plant that includes thermal generating units for generating electricity. The power plant may include multiple possible operating modes differentiated by characteristics of operating parameters. The method may include tuning a power plant model so to configure a tuned power plant model. The method may further include simulating proposed operating modes of the power plant with the tuned power plant model. The simulating may include a simulation procedure that includes: defining a second operating period; selecting the proposed operating modes from the possible operating modes; with the tuned power plant model, performing a simulation run for each of the proposed operating modes whereby the operation of the power plant during the second operating period is simulated; and obtaining simulation results from each of the simulation runs.
Abstract:
A control method for optimizing an operation of a power plant fleet. The power plant fleet may include multiple operating configurations differentiated by a manner in which assets are engaged. The method may include the steps of: sensing and collecting measured values of the operating parameters for the operating of each of the assets; tuning asset models so to configure a tuned asset model for each of the assets; simulating proposed operating configurations of the power plant fleet using the tuned asset models; and obtaining simulation results from each of the simulation runs, each of the simulation results including a predicted value for a performance indicator.