Abstract:
Various methods and systems are provided for maintaining polarization of an ultrasound probe and increasing image quality of an image generated during an imaging procedure. As one example, a method for an ultrasound imaging system may include executing one or more imaging sequences with an ultrasound transducer; and applying a repolarization sequence to the ultrasound transducer one or more of before, after, and interleaved between the one or more imaging sequences, where the repolarization sequence is separate from the one or more imaging sequences.
Abstract:
A system includes an ultrasound patch probe and brackets having a body and a base. The body includes a coupler and a hollow interior portion. The coupler is operable to receive the probe at a pre-defined ultrasound acquisition angle. The coupler defines a probe opening to provide the probe access to the hollow interior portion of the body. The coupler of each of the brackets is arranged to receive the probe at a different pre-defined ultrasound acquisition angle. The base surrounds a perimeter of the body and defines a bracket opening that extends through the base to provide access to the hollow interior portion of the body. The base includes a bottom surface operable to be secured against skin of a patient. The ultrasound patch probe is communicatively coupled to an ultrasound imaging system and detachably coupleable to the coupler of any selected one of the brackets.
Abstract:
Various methods and systems are provided for maintaining polarization of an ultrasound probe and increasing image quality of an image generated during an imaging procedure. As one example, a method for an ultrasound imaging system may include executing one or more imaging sequences with an ultrasound transducer; and applying a repolarization sequence to the ultrasound transducer one or more of before, after, and interleaved between the one or more imaging sequences, where the repolarization sequence is separate from the one or more imaging sequences.
Abstract:
A system includes an ultrasound patch probe and brackets having a body and a base. The body includes a coupler and a hollow interior portion. The coupler is operable to receive the probe at a pre-defined ultrasound acquisition angle. The coupler defines a probe opening to provide the probe access to the hollow interior portion of the body. The coupler of each of the brackets is arranged to receive the probe at a different pre-defined ultrasound acquisition angle. The base surrounds a perimeter of the body and defines a bracket opening that extends through the base to provide access to the hollow interior portion of the body. The base includes a bottom surface operable to be secured against skin of a patient. The ultrasound patch probe is communicatively coupled to an ultrasound imaging system and detachably coupleable to the coupler of any selected one of the brackets.
Abstract:
An ultrasound transducer and an ultrasound imaging system including an acoustic layer with a plurality of transducer elements and a dematching layer coupled to the acoustic layer. The dematching layer has an acoustic impedance greater than the acoustic layer and the dematching layer has a thickness that varies in order to alter a bandwidth of the ultrasound probe.
Abstract:
An ultrasound transducer and an ultrasound imaging system including an acoustic layer with a plurality of transducer elements and a dematching layer coupled to the acoustic layer. The dematching layer has an acoustic impedance greater than the acoustic layer and the dematching layer has a thickness that varies in order to alter a bandwidth of the ultrasound probe.
Abstract:
An ultrasound transducer and an ultrasound imaging system including an acoustic layer with a plurality of transducer elements and a dematching layer coupled to the acoustic layer. The dematching layer has an acoustic impedance greater than the acoustic layer and the dematching layer has a thickness that varies in order to alter a bandwidth of the ultrasound probe.
Abstract:
An ultrasound transducer and an ultrasound imaging system including an acoustic layer with a plurality of transducer elements and a dematching layer coupled to the acoustic layer. The dematching layer has an acoustic impedance greater than the acoustic layer and the dematching layer has a thickness that varies in order to alter a bandwidth of the ultrasound probe.