摘要:
The present disclosure relates to a structure which includes a first metal layer patterned as a mandrel, a dielectric spacer on the first metal layer, and a second metal layer on the dielectric spacer.
摘要:
The present disclosure relates to semiconductor structures and, more particularly, to merged mandrel lines and methods of manufacture. The structure includes: at least one metal line having a first dimension in a self-aligned double patterning (SADP) line array; and at least one metal line having a second dimension inserted into the SADP line array, the second dimension being different than the first dimension.
摘要:
A self-aligned double patterning (SADP) method is disclosed. The method may include forming a mandrel over an underlying layer, and undercutting the mandrel forming an undercut space under opposing sides of the mandrel. A pair of spacers may be formed adjacent the mandrel, each spacer including a vertical spacer portion on each side of the mandrel and an undercut spacer portion extending into the undercut space from the vertical spacer portion, the undercut spacer portions defining a sub-lithographic lateral dimension therebetween. The mandrels may be removed and, a sub-lithographic feature etched into at least the underlying layer using the spacers.
摘要:
A method including forming a penta-layer hardmask above a substrate, the penta-layer hardmask comprising a first hardmask layer above a second hardmask layer; forming a trench pattern in the first hardmask layer; transferring a first via bar pattern from a first photo-resist layer above the penta-layer hardmask into the second hardmask layer resulting in a first via pattern, the first via pattern in the second hardmask layer overlapping the trench pattern and being self-aligned on two sides by the trench pattern in the first hardmask layer; and transferring the first via pattern from the second hardmask layer into the substrate resulting in a self-aligned via opening, the self-aligned via opening being self-aligned on all sides by the first via pattern in the second hardmask layer.
摘要:
A wafer chip and a method of designing the chip is disclosed. A first fuse is formed having a first critical dimension and a second fuse having a second critical dimension are formed in a layer of the chip. A voltage may be applied to burn out at least one of the first fuse and the second fuse. The first critical dimension of the first fuse may result from applying a first mask to the layer and applying light having a first property to the mask. The second critical dimension of the second fuse may result from applying a second mask to the layer and applying light having a second property to the mask.
摘要:
A wafer chip and a method of designing the chip is disclosed. A first fuse is formed having a first critical dimension and a second fuse having a second critical dimension are formed in a layer of the chip. A voltage may be applied to burn out at least one of the first fuse and the second fuse. The first critical dimension of the first fuse may result from applying a first mask to the layer and applying light having a first property to the mask. The second critical dimension of the second fuse may result from applying a second mask to the layer and applying light having a second property to the mask.
摘要:
Methods of self-aligned multiple patterning. First and second mandrels are formed over a hardmask, and a conformal spacer layer is deposited over the first mandrel, the second mandrel, and the hardmask between the first mandrel and the second mandrel. A planarizing layer is patterned to form first and second trenches that expose first and second lengthwise portions of the conformal spacer layer respectively between the first and second mandrels. After patterning the planarizing layer, the first and second lengthwise portions of the conformal spacer layer are removed with an etching process to expose respective portions of the hardmask along a non-mandrel line. A third lengthwise portion of the conformal spacer layer is masked during the etching process by a portion of the planarizing layer and defines a non-mandrel etch mask.
摘要:
An aspect of the invention includes a freestanding spacer having a sub-lithographic dimension for a sidewall image transfer process. The freestanding spacer comprises: a first spacer layer having a first portion disposed on the semiconductor layer; and a second spacer layer having a first surface disposed on the first portion of the first spacer layer, wherein the first spacer layer has a first dielectric constant and the second spacer layer has a second dielectric constant, the first dielectric constant being greater than the second dielectric constant, and wherein a dimension of each of the first and second spacer layers collectively determine the sub-lithographic lateral dimension of the freestanding spacer.
摘要:
A method including forming a penta-layer hardmask above a substrate, the penta-layer hardmask comprising a first hardmask layer above a second hardmask layer; forming a trench pattern in the first hardmask layer; transferring a first via bar pattern from a first photo-resist layer above the penta-layer hardmask into the second hardmask layer resulting in a first via pattern, the first via pattern in the second hardmask layer overlapping the trench pattern and being self-aligned on two sides by the trench pattern in the first hardmask layer; and transferring the first via pattern from the second hardmask layer into the substrate resulting in a self-aligned via opening, the self-aligned via opening being self-aligned on all sides by the first via pattern in the second hardmask layer.
摘要:
A method including forming a penta-layer hardmask above a substrate, the penta-layer hardmask comprising a first hardmask layer above a second hardmask layer; forming a trench pattern in the first hardmask layer; transferring a first via bar pattern from a first photo-resist layer above the penta-layer hardmask into the second hardmask layer resulting in a first via pattern, the first via pattern in the second hardmask layer overlapping the trench pattern and being self-aligned on two sides by the trench pattern in the first hardmask layer; and transferring the first via pattern from the second hardmask layer into the substrate resulting in a self-aligned via opening, the self-aligned via opening being self-aligned on all sides by the first via pattern in the second hardmask layer.