Abstract:
Damping members for turbocharger assemblies, methods for providing turbocharger assemblies, and turbocharger assemblies are described herein. The damping members include bodies having shapes to fit between a recess extending into a rotor disk of a turbocharger and laterally protruding shoulders of platforms in neighboring blades of the turbocharger. The bodies dampen vibrations of the blades during rotation of the blades. The damping members may include a variety of shapes, such as a sheet, a wedge, a tapered pin, a cylindrical pin, a bent sheet, or another shape.
Abstract:
A hermetically sealed damper assembly includes a sealed damper housing, a plunger, and a load transferring member coupled to the plunger. The sealed damper housing includes a body having a cavity and a resistive flow path defined therein. The cavity and resistive flow path are filled with a viscous fluid. The body includes a plurality of springs integrally formed therein. The plunger is disposed within the cavity, and separates the cavity into a first control volume and a second control volume. The resistive flow path provides fluid communication between the first and second control volumes. The plunger is coupled to the damper housing by the plurality of springs such that the springs provide a restorative force to the plunger. The load transferring member is configured to transmit mechanical loads to the plunger.
Abstract:
A journal bearing assembly includes a bearing housing, a plurality of bearing pads, and a plurality of bearing pad support assemblies. The bearing housing includes a radial outer wall. The plurality of bearing pads are mounted within the bearing housing, and include at least one of a gas permeable porous media and an array of gas delivery holes. The plurality of bearing pad support assemblies are radially interposed between the bearing pads and the radial outer wall. Each of the bearing pad support assemblies includes a spring assembly and a damper assembly.
Abstract:
A blind shear ram includes an upper carrier including an upper blade and a lower carrier including a lower blade. The upper carrier and the lower carrier are positionable in a first position in which the upper carrier and the lower carrier are spaced apart and a second position in which the upper carrier and the lower carrier seal a wellbore. The upper blade and the lower blade are configured to cut at least one pipe and at least one cable when the upper carrier and the lower carrier move between the first position and the second position. At least one of the upper blade and the lower blade includes a textured surface configured to induce friction between the at least one cable and the blade.
Abstract:
Damping members for turbocharger assemblies, methods for providing turbocharger assemblies, and turbocharger assemblies are described herein. The damping members include bodies having shapes to fit between a recess extending into a rotor disk of a turbocharger and laterally protruding shoulders of platforms in neighboring blades of the turbocharger. The bodies dampen vibrations of the blades during rotation of the blades. The damping members may include a variety of shapes, such as a sheet, a wedge, a tapered pin, a cylindrical pin, a bent sheet, or another shape.
Abstract:
A journal bearing assembly includes a bearing housing, a plurality of bearing pads, and a plurality of bearing pad support assemblies. The bearing housing includes a radial outer wall. The plurality of bearing pads are mounted within the bearing housing, and include at least one of a gas permeable porous media and an array of gas delivery holes. The plurality of bearing pad support assemblies are radially interposed between the bearing pads and the radial outer wall. Each of the bearing pad support assemblies includes a spring assembly and a damper assembly.
Abstract:
A hermetically sealed damper assembly includes a sealed damper housing, a plunger, and a load transferring member coupled to the plunger. The sealed damper housing includes a body having a cavity and a resistive flow path defined therein. The cavity and resistive flow path are filled with a viscous fluid. The body includes a plurality of springs integrally formed therein. The plunger is disposed within the cavity, and separates the cavity into a first control volume and a second control volume. The resistive flow path provides fluid communication between the first and second control volumes. The plunger is coupled to the damper housing by the plurality of springs such that the springs provide a restorative force to the plunger. The load transferring member is configured to transmit mechanical loads to the plunger.
Abstract:
Dampers and a fuel delivery systems including such dampers are disclosed. The damper includes a first component and a dampening component. The first component is coupled to a first tubular element and includes a first extended hollow section. The dampening component is coupled to a second tubular element. The dampening component includes a first end portion including a plurality of slits. The first end portion is disposed within the first extended hollow section to frictionally couple the first end portion to the first extended hollow section.
Abstract:
A blind shear ram includes an upper carrier including an upper blade and a lower carrier including a lower blade. The upper carrier and the lower carrier are positionable in a first position in which the upper carrier and the lower carrier are spaced apart and a second position in which the upper carrier and the lower carrier seal a wellbore. The upper blade and the lower blade are configured to cut at least one pipe and at least one cable when the upper carrier and the lower carrier move between the first position and the second position. At least one of the upper blade and the lower blade includes a textured surface configured to induce friction between the at least one cable and the blade.
Abstract:
Dampers and a fuel delivery systems including such dampers are disclosed. The damper includes a first component and a dampening component. The first component is coupled to a first tubular element and includes a first extended hollow section. The dampening component is coupled to a second tubular element. The dampening component includes a first end portion including a plurality of slits. The first end portion is disposed within the first extended hollow section to frictionally couple the first end portion to the first extended hollow section.