Abstract:
A system and method for monitoring and controlling build quality during electron beam manufacturing of a build part. The system may include at least one electron beam source to direct at least one electron beam onto a plurality of deposited layers of metallic powder to form a melt pool, a detector to detect in real-time backscattered energy ejected from the melt pool and indicative of a defect in the build part and generate a detection signal representative of the defect. A controller receives and analyzes the detection signal and generates a corrective signal for control of at least one of the actuator and the at least one electron beam source to direct the at least one electron beam onto the plurality of deposited layers of metallic powder to sequentially consolidate patterned portions of the plurality of deposited metallic powder layers to adaptively form the three-dimensional build part.
Abstract:
The present disclosure relates to the production and use of a multi-layer X-ray source target. In certain implementations, layers of X-ray generating material may be interleaved with thermally conductive layers. To prevent delamination of the layers, various mechanical, chemical, and structural approaches are related, including approaches for reducing the internal stress associated with the deposited layers and for increasing binding strength between layers.
Abstract:
In various embodiments, a multi-layer X-ray source target is provided having two or more layers of target material at different depths and different thicknesses. In one such embodiment the X-ray generating layers increase in thickness in relationship to their depth relative to the electron beam facing surface of the source target, such that X-ray generating layer further from this surface are thick than X-ray generating layers closer to the electron beam facing surface.
Abstract:
A filtering device includes an X-ray translucent substrate having a plurality of septa disposed therein at a plurality of fixed positions with respect to the substrate. A controller is programmed to acquire a first set of projection data at a first energy spectrum by controlling the X-ray source to emit the X-rays at the first energy spectrum and controlling the position of the filtering device to focally align the plurality of septa with the X-ray beam emitted from the focal spot, and to acquire a second set of projection data at a second energy spectrum with a mean energy greater than the mean energy of the first energy spectrum by controlling the X-ray source to emit the X-rays at the second energy spectrum and controlling a change in the position of the filtering device to focally misalign the plurality of septa with the X-ray beam emitted from the focal spot.
Abstract:
In one embodiment, an X-ray source includes a source target configured to generate X-rays when impacted by an electron beam. The source target includes one or more thermally conductive layers; and one or more X-ray generating layers interleaved with the thermally conductive layers, wherein at least one X-ray generating layer comprises regions of X-ray generating material separated by thermally conductive material within the respective X-ray generating layer.
Abstract:
An X-ray filter assembly is disclosed having a stack of X-ray attenuating sheets that are angled so as to have a focus point. When implemented in an imaging system, the focus point of the filter assembly is spatially offset (e.g., behind) the X-ray emission location. The filter assembly may be used (e.g., translated, rotated, and so forth) to adjust the intensity profile of the X-rays seen in an imaging volume.
Abstract:
An X-ray filter assembly is disclosed having a stack of X-ray attenuating sheets that are angled so as to have a focus point. When implemented in an imaging system, the focus point of the filter assembly is spatially offset (e.g., behind) the X-ray emission location. The filter assembly may be used (e.g., translated, rotated, and so forth) to adjust the intensity profile of the X-rays seen in an imaging volume.
Abstract:
Embodiments of the disclosure relate to electron emitters for use in conjunction with X-ray emitting devices. In certain embodiments the emitter includes features that prevent, limit, or control deflection of the electron emitter at operating temperatures. In this manner, the electron emitter may be kept substantially flat or at a desired curvature during operation.
Abstract:
A system and method for monitoring and controlling build quality during electron beam manufacturing of a build part. The system may include at least one electron beam source to direct at least one electron beam onto a plurality of deposited layers of metallic powder to form a melt pool, a detector to detect in real-time backscattered energy ejected from the melt pool and indicative of a defect in the build part and generate a detection signal representative of the defect. A controller receives and analyzes the detection signal and generates a corrective signal for control of at least one of the actuator and the at least one electron beam source to direct the at least one electron beam onto the plurality of deposited layers of metallic powder to sequentially consolidate patterned portions of the plurality of deposited metallic powder layers to adaptively form the three-dimensional build part.
Abstract:
The present disclosure relates to the production and use of a multi-layer X-ray source target. In certain implementations, layers of X-ray generating material may be interleaved with thermally conductive layers. To prevent delamination of the layers, various mechanical, chemical, and structural approaches are related, including approaches for reducing the internal stress associated with the deposited layers and for increasing binding strength between layers.