Abstract:
A system for detecting an array of samples having detectable samples and at least one reference sample is provided. The system comprises an electromagnetic radiation source, a sensing surface comprising a plurality of sample fields, wherein the plurality of sample fields comprise at least one reference field, a phase difference generator configured to introduce differences in pathlengths of one or more samples in the array of samples, and an imaging spectrometer configured to image one or more samples in the array of samples.
Abstract:
Provided is a laser system that includes a laser head having a laser holder configured to house a laser beam and a lens for reflecting the laser beam at a predetermined wavelength, and a thermal-mechanical adjustment device disposed on the laser head and configured to adjust a temperature and an alignment of the laser beam, to maintain the predetermined wavelength of the laser beam.
Abstract:
A gas detector and method are presented. The gas detector includes a launcher unit for coupling and merging light beams in mid-infrared and infrared wavelength ranges into a single light beam and directing the merged single light beam towards a gas flow path; a receiver unit for generating at least one photo detector current signal based on the light beam transmitted through the gas flow path; and a control unit for processing at least one photo detector current signal to measure concentration of the at least two gases present in the gas flow path.
Abstract:
Provided is a laser system that includes a laser head having a laser holder configured to house a laser beam and a lens for reflecting the laser beam at a predetermined wavelength, and a thermal-mechanical adjustment device disposed on the laser head and configured to adjust a temperature and an alignment of the laser beam, to maintain the predetermined wavelength of the laser beam.
Abstract:
A method implemented on a processor includes emitting a light beam from a light source to a component in an absorption cell, wherein the light beam comprises a plurality of wavelength beams. The method further includes generating a plurality of response signals due to the presence of the component, corresponding to the plurality of wavelength beams of the light beam. The method also includes detecting the plurality of response signals by a photo detector coupled to the absorption cell. The method includes determining a concentration of the component based on the plurality of response signals.
Abstract:
A system, comprising at least one source for irradiating electromagnetic radiation into a sample fluid and a reference fluid resulting in a change in a temperature of the sample fluid and a change in a temperature of the reference fluid, and a processing subsystem that monitors and determines a concentration of a gas of interest dissolved in the sample fluid based upon a difference between the change in the temperature of the sample fluid and the change in the temperature of the reference fluid, wherein the reference fluid does not contain the gas of interest, and the electromagnetic radiation has a wavelength range corresponding to a spectral absorption range of the gas of interest.
Abstract:
A holding is presented. The holding device includes a male connector comprising a first male extension and a second male extension that extend out of opposite surfaces of a male central disk, an electromagnetic guiding device continuously passing through a central hole that continuously passes through the first male extension, the male central disk and the second male extension, a reflector that is in a direct physical contact with a first end of the electromagnetic guiding device that ends at a top surface of the first male extension, and a holder that covers the first male extension to hold the reflector, and maintain the physical contact between the first end of the electromagnetic guiding device and the reflector.
Abstract:
A system, comprising at least one source for irradiating electromagnetic radiation into a sample fluid and a reference fluid resulting in a change in a temperature of the sample fluid and a change in a temperature of the reference fluid, and a processing subsystem that monitors and determines a concentration of a gas of interest dissolved in the sample fluid based upon a difference between the change in the temperature of the sample fluid and the change in the temperature of the reference fluid, wherein the reference fluid does not contain the gas of interest, and the electromagnetic radiation has a wavelength range corresponding to a spectral absorption range of the gas of interest.
Abstract:
A method for dissolved gas analysis is presented. The method includes the steps of irradiating a fluid with electromagnetic radiation; and determining a concentration of a gas as a function of a temperature change of the fluid in response to the irradiation. A device for such an analysis of dissolved gases in a fluid, and a system having such device are also described.
Abstract:
A system, comprising at least one source for irradiating electromagnetic radiation into a sample fluid and a reference fluid resulting in a change in a temperature of the sample fluid and a change in a temperature of the reference fluid, and a processing subsystem that monitors and determines a concentration of a gas of interest dissolved in the sample fluid based upon a difference between the change in the temperature of the sample fluid and the change in the temperature of the reference fluid, wherein the reference fluid does not contain the gas of interest, and the electromagnetic radiation has a wavelength range corresponding to a spectral absorption range of the gas of interest.