Abstract:
A mammography apparatus including an x-ray source having an x-ray tube with one or more focal spots, a controller for controlling one or more parameters of the x-ray exposure, a digital image receptor configured to generate an x-ray image from objects positioned between the x-ray source and the digital image receptor, a specimen tray configured to receive samples from a biopsy, a positioning arm for positioning the specimen tray between the x-ray source and the digital image receptor, and a detector configured to detect the presence of the specimen tray when it is positioned. The controller is configured to adjust, select or configure one or more parameters of the x-ray exposure in reaction to the detection of the presence of the specimen tray in such a way that the one or more parameters are adapted to the specific needs of imaging biopsy specimens.
Abstract:
A method of continuous motion digital tomosynthesis includes exposing an object to a programed intensity x-ray beam as an x-ray source travels a pre-determined path, accumulating a signal charge from the x-ray beam, recording the accumulated signal charge into a digital frame image representing raw baseline data, acquiring information on the source's and the detector's position when the recording occurs, compressing the raw baseline data into compressed views, where each respective compressed view is formed by combining the raw data readouts of the respective compressed view, and reconstructing a volumetric breast image by processing each respective compressed view with a reconstruction process function that incorporates the acquired position information and a spatial sampling corresponding to the compressed views. A system configured to implement the method and a computer-readable medium are also disclosed.
Abstract:
A process for deploying an anti-scattering grid in a mammograph is provided. The mammograph comprises a radiation source configured to emit radiation for taking mammographic images of a patient, a radiation detector comprising a network of sensors arranged periodically with a first pitch, and an anti-scattering grid arranged between the source and the detector, the anti-scattering grid comprising radiation adsorbing strips arranged parallel to each other and distributed periodically with a second pitch. The process comprises: displacing the anti-scattering grid relative to the detector or displacing the detector relative to the anti-scattering grid during emission of radiation; adapting the second pitch to the first pitch, wherein displacement is perpendicular to the direction of the strips of the anti-scattering grid, the strips being arranged parallel to a side of the anti-scattering grid positioned against the patient, and altering the positions of the return points between successive periods of the displacement motion.
Abstract:
An X-ray source comprising a cathode element adapted to generate a stream of electrons. The X-ray source includes an anode element adapted to present a focal spot position for the stream of electrons. A vacuum chamber contains the cathode element and anode element. The anode element and/or the cathode element can be moveable with respect to the other in coordination with the generation of the stream of electrons.
Abstract:
An X-ray source comprising a cathode element adapted to generate a stream of electrons. The X-ray source includes an anode element adapted to present a focal spot position for the stream of electrons. A vacuum chamber contains the cathode element and anode element. The anode element and/or the cathode element can be moveable with respect to the other in coordination with the generation of the stream of electrons.
Abstract:
According to some embodiments, a method and a system to create a medical image are disclosed. The method comprises receiving a plurality of patient tissue images during an x-ray dose. Furthermore, during the x-ray dose, a determination is made if motion occurred in the plurality of patient tissue images. In a case that no motion is determined, a diagnostic image of the patient tissue comprising the plurality of patient tissue images is created.
Abstract:
Improvement of the dynamic range of a radiation detector is described. In one embodiment, one or more non-destructive readout operations are performed during a radiation exposure event to acquire data used to improve the dynamic range of the detector. In one implementation, one or more non-destructive readouts of pixels are performed prior to saturation of the pixels during an X-ray exposure so as to obtain non-saturated measurements at the pixels. In an additional implementation, non-destructive readouts of pixels are performed between exposure events so as to obtain an estimate of electronic noise during a multi-exposure examination.
Abstract:
A tomography apparatus includes a multi-focal point x-ray source, a support to travel a trajectory path, a detector having a plurality of pixels, where one of the multi-focal point x-ray source, the detector, and an item-under-test move on the support. A control processor controls a change in the focal point of the x-ray source at discrete points, or continuously, within a measurement region, the focal point change in a direction retrograde to the support arm travel, a detector memory accumulates a digital value representative of a signal charge from at least a portion of the plurality of pixels, the control processor reconstructs a volumetric image of the item-under-test by processing the detector memory contents. A method for continuous tomosynthesis and a computer-readable medium are also disclosed.
Abstract:
Improvement of the dynamic range of a radiation detector is described. In one embodiment, one or more non-destructive readout operations are performed during a radiation exposure event to acquire data used to improve the dynamic range of the detector. In one implementation, one or more non-destructive readouts of pixels are performed prior to saturation of the pixels during an X-ray exposure so as to obtain non-saturated measurements at the pixels. In an additional implementation, non-destructive readouts of pixels are performed between exposure events so as to obtain an estimate of electronic noise during a multi-exposure examination.
Abstract:
A tomography apparatus includes a multi-focal point x-ray source, a support to travel a trajectory path, a detector having a plurality of pixels, where one of the multi-focal point x-ray source, the detector, and an item-under-test move on the support. A control processor controls a change in the focal point of the x-ray source at discrete points, or continuously, within a measurement region, the focal point change in a direction retrograde to the support arm travel, a detector memory accumulates a digital value representative of a signal charge from at least a portion of the plurality of pixels, the control processor reconstructs a volumetric image of the item-under-test by processing the detector memory contents. A method for continuous tomosynthesis and a computer-readable medium are also disclosed.