Abstract:
A method of calibrating a system for imaging a subject is provided. The method includes determining a position of an X-ray source of the system operative to transmit X-rays through the subject; and calibrating the position of the X-ray source with respect to a detector of the system, based at least in part on a field of view of the X-ray source, the detector operative to receive the X-rays transmitted by the X-ray source. In embodiments, the method includes positioning an X-ray source of the system via a controller at one or more calibration positions based at least in part on at least one camera of the system. In such embodiments the X-ray source is disposed on a mobile arm and operative to transmit X-rays through the subject, and a field of view of the X-ray source is directed substantially towards the detector at each of the calibration positions.
Abstract:
The present approach relates to the use of augmented or enhanced reality to facilitate positioning of one or more of a patient, X-ray source, or detector during an image acquisition. In certain implementations, sensors and/or cameras provide quantitative information about the position of system components and the patient, which may be used to generate a positioning signal (positioning image audio or textual positioning instructions) based upon reference to a prior patient image.
Abstract:
A method for image correction in a mobile X-ray device includes obtaining an X-ray image corresponding to a region of interest, where the X-ray image includes a projection of the region of interest by an X-ray beam on a detector plane. The method further includes receiving a tilt parameter corresponding to the detector plane. Moreover, the method includes generating a corrected X-ray image based on the X-ray image and the tilt parameter using a perspective projection technique, where the corrected X-ray image corresponds to a projection of the region of interest on a corrected detector plane.
Abstract:
A handheld device for fetal health monitoring is provided. The device comprises at least one sensor configured to detect fetal movement, and an ultrasound transducer unit configured to record a heartbeat sound of the fetus. The device further comprises a storage unit connectable to the at least one sensor and the ultrasound transducer unit and configured to store the detected fetal movement along with a timestamp and the heartbeat sound of the fetus in the form of digital information.
Abstract:
The present approach relates to the use of augmented or enhanced reality to facilitate positioning of one or more of a patient, X-ray source, or detector during an image acquisition. In certain implementations, sensors and/or cameras provide quantitative information about the position of system components and the patient, which may be used to generate a positioning signal (positioning image audio or textual positioning instructions) based upon reference to a prior patient image.
Abstract:
Various methods and systems are provided for x-ray imaging. In one embodiment, a method for an image pasting examination comprises acquiring, via an optical camera and/or depth camera, image data of a subject, controlling an x-ray source and an x-ray detector according to the image data to acquire a plurality of x-ray images of the subject, and stitching the plurality of x-ray images into a single x-ray image. In this way, optimal exposure techniques may be used for individual acquisitions in an image pasting examination such that the optimal dose is utilized, stitching quality is improved, and registration failures are avoided.
Abstract:
A method for image correction in a mobile X-ray device includes obtaining an X-ray image corresponding to a region of interest, where the X-ray image includes a projection of the region of interest by an X-ray beam on a detector plane. The method further includes receiving a tilt parameter corresponding to the detector plane. Moreover, the method includes generating a corrected X-ray image based on the X-ray image and the tilt parameter using a perspective projection technique, where the corrected X-ray image corresponds to a projection of the region of interest on a corrected detector plane.