Abstract:
A method of machining a work-piece formed of titanium-based material, using a machining apparatus, is described. The method includes the steps of providing an electrically-conductive electrode contained within a spindle assembly, in a pre-selected distance and position relative to the titanium-based work-piece; while electrically powering the electrode and the work-piece with a power supply. In the process, fluid electrolyte is circulated through at least two pathways in the machining apparatus—an internal conduit within the spindle assembly; and an external conduit. The charged electrode is moved relative to the work-piece in a plunging motion, to remove material from the work-piece at a relatively high rate, using a high-speed electro-erosion (HSEE) process.
Abstract:
A method of machining a work-piece formed of titanium-based material, using a machining apparatus, is described. The method includes the steps of providing an electrically-conductive electrode contained within a spindle assembly, in a pre-selected distance and position relative to the titanium-based work-piece; while electrically powering the electrode and the work-piece with a power supply. In the process, fluid electrolyte is circulated through at least two pathways in the machining apparatus—an internal conduit within the spindle assembly; and an external conduit. The charged electrode is moved relative to the work-piece in a plunging motion, to remove material from the work-piece at a relatively high rate, using a high-speed electro-erosion (HSEE) process.
Abstract:
A drilling tool for use in machining a conductive work piece is provided. The tool includes a forward electrode tip that includes an outer radial portion and an inner radial portion that extends from a forward face of the outer radial portion. The tool also includes a dielectric sheath that extends circumferentially about the outer radial portion, and at least one side electrode coupled to the dielectric sheath. When electric current is supplied to the forward electrode tip and the at least one side electrode, material adjacent to the forward electrode tip and the at least one side electrode is removed from the conductive work piece. The forward electrode tip and the at least one side electrode are selectively operable to form a bore hole having a variable geometry that extends through the conductive work piece when the material is removed therefrom.
Abstract:
A drilling tool for use in machining a conductive work piece is provided. The tool includes a forward electrode tip that includes an outer radial portion and an inner radial portion that extends from a forward face of the outer radial portion. The tool also includes a dielectric sheath that extends circumferentially about the outer radial portion, and at least one side electrode coupled to the dielectric sheath. When electric current is supplied to the forward electrode tip and the at least one side electrode, material adjacent to the forward electrode tip and the at least one side electrode is removed from the conductive work piece. The forward electrode tip and the at least one side electrode are selectively operable to form a bore hole having a variable geometry that extends through the conductive work piece when the material is removed therefrom.