Abstract:
A method for providing backup control for a supervisory controller of at least one wind turbine includes observing, via a learning-based backup controller of the at least one wind turbine, at least one operating parameter of the supervisory controller under normal operation. The method also includes learning, via the learning-based backup controller, one or more control actions of the at least one wind turbine based on the operating parameter(s). Further, the method includes receiving, via the learning-based backup controller, an indication that the supervisory controller is unavailable to continue the normal operation. Upon receipt of the indication, the method includes controlling, via the learning-based backup controller, the wind turbine(s) using the learned one or more control actions until the supervisory controller becomes available again. Moreover, the control action(s) defines a delta that one or more setpoints of the wind turbine(s) should be adjusted by to achieve a desired outcome.
Abstract:
Systems and methods are provided for the control of an industrial asset, such as a power generating asset. Accordingly, a cyber-attack model predicts a plurality of operational impacts on the industrial asset resulting from a plurality of potential cyber-attacks. The cyber-attack model also predicts a corresponding plurality of potential mitigation responses. In operation, a cyber-attack impacting at least one component of the industrial asset is detected via the cyber-attack neutralization module and a protected operational impact of the cyber-attack is identified based on the cyber-attack model. The cyber-attack neutralization module selects at least one mitigation response of the plurality of mitigation responses based on the predicted operational impact and an operating state of the industrial asset is altered based on the selected mitigation response.
Abstract:
A method for building a model-based control solution is disclosed. The method includes obtaining, via a model-based control definition sub-unit, a first set of component models from a component model library and defining, via the model-based control definition sub-unit, a system model by interconnecting the first set of component models. Also, the method includes obtaining, via the model-based control definition sub-unit, a first model-based analytic algorithm from a model-based analytic algorithm library and associating, via the model-based control definition sub-unit, the first model-based analytic algorithm with the system model to generate the model-based control solution.
Abstract:
Systems and methods are provided for the control of an industrial asset, such as a power generating asset. Accordingly, a cyber-attack model predicts a plurality of operational impacts on the industrial asset resulting from a plurality of potential cyber-attacks. The cyber-attack model also predicts a corresponding plurality of potential mitigation responses. In operation, a cyber-attack impacting at least one component of the industrial asset is detected via the cyber-attack neutralization module and a protected operational impact of the cyber-attack is identified based on the cyber-attack model. The cyber-attack neutralization module selects at least one mitigation response of the plurality of mitigation responses based on the predicted operational impact and an operating state of the industrial asset is altered based on the selected mitigation response.
Abstract:
In accordance with one aspect of the present technique, a method is disclosed. The method includes modifying one or more operational parameters of a gas turbine (GT) to increase an exhaust gas temperature above a standard start-up temperature. The method also includes receiving at least one of GT operational data, heat recovery steam generator (HRSG) operational data, and steam turbine (ST) operational data from a plurality of sensors. The method further includes predicting a ST roll-off time based on at least one of the GT operational data, the HRSG operational data, and the ST operational data. The method further includes modifying the one or more operational parameters of the GT to satisfy one or more ST roll-off permissives at the predicted ST roll-off time.
Abstract:
Systems and methods are provided for the control of an industrial asset, such as a power generating asset. Accordingly, an interceptor module receives a state-change instruction from a state module that directs a change from a first state condition to a second state condition. The first and second state conditions direct modes of operation of at least one sub module of the controller of the industrial asset. The interceptor module then correlates the state-change instruction to a state-change classification. Based on the state-change classification, the interceptor module identifies an indication of a mode-switching attack. In response to the identification of the mode-switching attack, at least one mitigation response is implemented.
Abstract:
A system for computing wind turbine estimated operational parameters and/or control commands, includes sensors monitoring the wind turbine, a control processor implementing a model performing a linearization evaluation to obtain a structural component dynamic behavior, a fluid component dynamic behavior, and/or a combined structural and fluid component dynamic behavior of wind turbine operation, and a module performing a calculation utilizing the linearization evaluation of the structural component dynamic behavior, the fluid component dynamic behavior, and/or the combined structural and fluid component dynamic behavior. The module being at least one of an estimation module and a multivariable control module. The estimation module generating signal estimates of turbine or fluid states. The multivariable control module determining actuator commands that include wind turbine commands that maintain operation of the wind turbine at a predetermined setting in real time. A method and a non-transitory medium are also disclosed.
Abstract:
A method for controlling an energy generation and storage system using a multi-layer architecture is provided. The method includes determining, by one or more control devices, a power or energy generation for the energy generation and storage system at a first layer of the multi-layer architecture. The method includes determining, by the one or more control devices, a power or energy set point for the system at a second layer of the multi-layer architecture. The method includes controlling, by the one or more control devices, the energy generation and storage system based, at least in part, on the power or energy setpoint.
Abstract:
A wind turbine is provided. The wind turbine includes a mechanical system, an electrical system and a controller. The controller is for determining an electrical capability limit of the electrical system according at least in part to one or more operating conditions of the wind turbine and one or more environment conditions of a site of the wind turbine, comparing the electrical capability limit of the electrical system and a mechanical capability limit of the mechanical system, and controlling the electrical system to operate at the smaller one of the electrical capability limit and the mechanical capability limit. A method for controlling a wind turbine comprising a mechanical system and an electrical system is also provided.
Abstract:
A system for wind turbine control includes a state dependent quadratic regulator (SDQR) control unit, a linear quadratic regulator (LQR) generating control acceleration commands for wind turbine speed and wind turbine power regulation, an actuator dynamic model computing a gain value for the LQR at predetermined sampling intervals and augmenting the actuator dynamic model with a wind turbine model. The wind turbine model either an analytical linearization model or a precomputed linear model, where the precomputed linear model is selected from a model bank based on a real-time scheduling operation, and the analytical linearization model is computed using an online linearization operation in real-time at time intervals during operation of the wind turbine based on current wind turbine operating point values present at about the time of linearization. A method and a non-transitory medium are also disclosed.