Abstract:
In embodiments of the invention, the habenulae have been identified and localized in normal volunteers. Aspects of the invention determine the location, volume and magnetic susceptibility of the habenulae. Furthermore, diagnosing and monitoring patient disorders are enabled using the herein disclosed methodologies and techniques.
Abstract:
Methods and systems using magnetic resonance and ultrasound for tracking anatomical targets for radiation therapy guidance are provided. One system includes a patient transport configured to move a patient between and into a magnetic resonance (MR) system and a radiation therapy (RT) system and an ultrasound transducer coupled to the patient transport, wherein the ultrasound transducer is configured to acquire four-dimensional (4D) ultrasound images concurrently with one of an MR acquisition or an RT radiation therapy session. The system also includes a controller having a processor configured to use the 4D ultrasound images and MR images from the MR system to control at least one of a photon beam spatial distribution or intensity modulation generated by the RT system.
Abstract:
A magnetic resonance imaging (MRI) coil system is provided that includes a gradient coil and a flow inlet. The gradient coil includes a flow channel passing therethrough. The gradient coil defines an eye and an end. The eye is disposed proximate the center of the gradient coil. The flow inlet is disposed along the gradient coil between the eye and the end. Cooling fluid is provided to the gradient coil via the flow inlet, and removed from the gradient coil via the eye and the end.
Abstract:
Methods and systems using magnetic resonance and ultrasound for tracking anatomical targets for radiation therapy guidance are provided. One system includes a patient transport configured to move a patient between and into a magnetic resonance (MR) system and a radiation therapy (RT) system. An ultrasound transducer is also provided that is hands-free and electronically steerable, securely attached to the patient, such that the ultrasound transducer is configured to acquire four-dimensional (4D) ultrasound images concurrently with one of an MR acquisition or an RT radiation therapy session. The system also includes a controller having a processor configured to use the 4D ultrasound images and MR images from the MR system to control at least one of a photon beam spatial distribution or intensity modulation generated by the RT system. The system determines the previously-acquired correct MR images that represent a specific motion state at some time, t, by a plurality of transformations that allow the representation of the position of fiducial markers in the corresponding ultrasound images to match that of a prior ultrasound acquisition.
Abstract:
A gradient coil unit having a peripheral surface enclosing a magnetic gradient axis, and a middle plane substantially perpendicular to the magnetic gradient axis at a middle portion of the gradient coil unit, comprising at least one folded coil which comprises a first set of curved conductors disposed on a first curved surface; a second set of curved conductors disposed on a second curved surface outside the first curved surface and substantially overlapping the first set of curved conductors; and a set of connecting conductors connecting selected curved conductors in the first set with selected curved conductors in the second set; wherein the set of connecting conductors is located at a first side of the middle plane.
Abstract:
Magnetic material imaging (MMI) system including first and second sets of field-generating coils. Each of the field-generating coils of the first and second sets has an elongated segment that extends along an imaging axis of the medical imaging system. The imaging axis extends through a region-of-interest (ROI) of an object. The elongated segments of the first set of field-generating coils are positioned opposite the elongated segments of the second set of field-generating coils and the ROI is located between the first and second sets of field-generating coils. The MMI system also includes a coil-control module configured to control a flow of current through the first and second sets of field-generating coils to generate a selection field and to generate a drive field. The selection and drive fields combine to form a movable 1D field free region (FFR) that extends through the ROI.
Abstract:
A method of manufacturing includes producing a gradient coil assembly having one or more cooling channels for a magnetic resonance imaging system by a process that includes printing a cooling channel template having a first end, a second end, and a hollow passage extending between the first end and the second end, disposing a dielectric material over at least a portion of the cooling channel template to generate a dielectric layer having the cooling channel template, and removing the cooling channel template from the dielectric layer to thereby produce the one or more cooling channels within the dielectric layer such that the one or more cooling channels have a pattern corresponding to a geometry of the cooling channel template.
Abstract:
A magnetic resonance imaging (MRI) coil system is provided that includes a gradient coil and a flow inlet. The gradient coil includes a flow channel passing therethrough. The gradient coil defines an eye and an end. The eye is disposed proximate the center of the gradient coil. The flow inlet is disposed along the gradient coil between the eye and the end. Cooling fluid is provided to the gradient coil via the flow inlet, and removed from the gradient coil via the eye and the end.
Abstract:
Methods and systems using magnetic resonance and ultrasound for tracking anatomical targets for radiation therapy guidance are provided. One system includes a patient transport configured to move a patient between and into a magnetic resonance (MR) system and a radiation therapy (RT) system. An ultrasound transducer is also provided that is hands-free and electronically steerable, securely attached to the patient, such that the ultrasound transducer is configured to acquire four-dimensional (4D) ultrasound images concurrently with one of an MR acquisition or an RT radiation therapy session. The system also includes a controller having a processor configured to use the 4D ultrasound images and MR images from the MR system to control at least one of a photon beam spatial distribution or intensity modulation generated by the RT system. The system determines the previously-acquired correct MR images that represent a specific motion state at some time, t, by a plurality of transformations that allow the representation of the position of fiducial markers in the corresponding ultrasound images to match that of a prior ultrasound acquisition.
Abstract:
Magnetic material imaging (MMI) system including first and second sets of field-generating coils. Each of the field-generating coils of the first and second sets has an elongated segment that extends along an imaging axis of the medical imaging system. The imaging axis extends through a region-of-interest (ROI) of an object. The elongated segments of the first set of field-generating coils are positioned opposite the elongated segments of the second set of field-generating coils and the ROI is located between the first and second sets of field-generating coils. The MMI system also includes a coil-control module configured to control a flow of current through the first and second sets of field-generating coils to generate a selection field and to generate a drive field. The selection and drive fields combine to form a movable 1D field free region (FFR) that extends through the ROI.