SYSTEMS AND METHODS FOR IMAGE SEGMENTATION USING TARGET IMAGE INTENSITY
    2.
    发明申请
    SYSTEMS AND METHODS FOR IMAGE SEGMENTATION USING TARGET IMAGE INTENSITY 有权
    使用目标图像强度的图像分割的系统和方法

    公开(公告)号:US20140226889A1

    公开(公告)日:2014-08-14

    申请号:US14177414

    申请日:2014-02-11

    Abstract: The system and method of the invention combines target image intensity into a maximum likelihood estimate (MLE) framework as in STAPLE to take advantage of both intensity-based segmentation and statistical label fusion based on atlas consensus and performance level, abbreviated iSTAPLE. The MLE framework is then solved using a modified expectation-maximization algorithm to simultaneously estimate the intensity profiles of structures of interest as well as the true segmentation and atlas performance level. The iSTAPLE greatly extends the use of atlases such that the target image need not have the same image contrast and intensity range as the atlas images.

    Abstract translation: 本发明的系统和方法将目标图像强度与STAPLE中的最大似然估计(MLE)框架相结合,以利用基于图集共识和性能水平(简称为iSTAPLE)的基于强度的分割和统计标签融合。 然后使用修改的期望最大化算法来解决MLE框架,以同时估计感兴趣的结构的强度分布以及真实的分段和图谱性能水平。 iSTAPLE大大扩展了地图集的使用,使得目标图像不需要具有与图集图像相同的图像对比度和强度范围。

    Systems and methods for image segmentation using target image intensity
    3.
    发明授权
    Systems and methods for image segmentation using target image intensity 有权
    使用目标图像强度的图像分割的系统和方法

    公开(公告)号:US09349186B2

    公开(公告)日:2016-05-24

    申请号:US14177414

    申请日:2014-02-11

    Abstract: The system and method of the invention combines target image intensity into a maximum likelihood estimate (MLE) framework as in STAPLE to take advantage of both intensity-based segmentation and statistical label fusion based on atlas consensus and performance level, abbreviated iSTAPLE. The MLE framework is then solved using a modified expectation-maximization algorithm to simultaneously estimate the intensity profiles of structures of interest as well as the true segmentation and atlas performance level. The iSTAPLE greatly extends the use of atlases such that the target image need not have the same image contrast and intensity range as the atlas images.

    Abstract translation: 本发明的系统和方法将目标图像强度与STAPLE中的最大似然估计(MLE)框架相结合,以利用基于图集共识和性能水平(简称为iSTAPLE)的基于强度的分割和统计标签融合。 然后使用修改的期望最大化算法来解决MLE框架,以同时估计感兴趣的结构的强度分布以及真实的分段和图谱性能水平。 iSTAPLE大大扩展了地图集的使用,使得目标图像不需要具有与图集图像相同的图像对比度和强度范围。

Patent Agency Ranking