Abstract:
Apparatuses, systems, and methods are disclosed for reconfiguring an array of storage elements. A storage element error module is configured to determine that one or more storage elements in an array of storage elements are in error. An array of storage elements stores a first ECC block and first parity data generated from the first ECC block. A data reconfiguration module is configured to generate a second ECC block comprising at least a portion of data of a first ECC block. A new configuration storage module is configured to store a second ECC block and associated second parity data on fewer storage elements than a number of storage elements in an array.
Abstract:
An apparatus, system, and method are disclosed for reconfiguring an array of solid-state storage elements. The method includes determining that one or more storage elements are unavailable to store data. The storage elements are configured in an array of N storage elements that each store a portion of a first ECC chunk and P storage elements that store first parity data corresponding to the first ECC chunk. The method includes generating a second ECC chunk comprising at least a portion of the data of the first ECC chunk. The method includes storing the second ECC chunk and associated second parity data across (N+P)−Z storage elements where 1≦Z≦P.
Abstract:
An apparatus, system, and method are disclosed for reconfiguring an array of solid-state storage elements. The method includes determining that one or more storage elements are unavailable to store data. The storage elements are configured in an array of N storage elements that each store a portion of a first ECC chunk and P storage elements that store first parity data corresponding to the first ECC chunk. The method includes generating a second ECC chunk comprising at least a portion of the data of the first ECC chunk. The method includes storing the second ECC chunk and associated second parity data across (N+P)−Z storage elements where 1≦Z≦P.
Abstract:
An apparatus, system, and method are disclosed for testing physical regions in a solid-state storage device. The method includes defining a physical storage region on solid-state storage media of a solid-state storage device. The physical storage region includes a subset of storage capacity of the solid-state storage media. The method includes implementing the physical storage region definition on a storage controller such that memory operations are bounded to the physical storage region. The method includes testing wear of solid-state storage media associated with the physical storage region using memory operations bounded to the physical storage region.
Abstract:
Apparatuses, systems, and methods are disclosed for reconfiguring an array of storage elements. A storage element error module is configured to determine that one or more storage elements in an array of storage elements are in error. An array of storage elements stores a first ECC block and first parity data generated from the first ECC block. A data reconfiguration module is configured to generate a second ECC block comprising at least a portion of data of a first ECC block. A new configuration storage module is configured to store a second ECC block and associated second parity data on fewer storage elements than a number of storage elements in an array.
Abstract:
Apparatuses, systems, and methods are disclosed for reconfiguring an array of storage elements. A storage element error module is configured to determine that one or more storage elements in an array of storage elements are in error. An array of storage elements stores a first ECC block and first parity data generated from the first ECC block. A data reconfiguration module is configured to generate a second ECC block comprising at least a portion of data of a first ECC block. A new configuration storage module is configured to store a second ECC block and associated second parity data on fewer storage elements than a number of storage elements in an array.
Abstract:
An apparatus, system, and method are disclosed for testing physical regions in a solid-state storage device. The method includes defining a physical storage region on solid-state storage media of a solid-state storage device. The physical storage region includes a subset of storage capacity of the solid-state storage media. The method includes implementing the physical storage region definition on a storage controller such that memory operations are bounded to the physical storage region. The method includes testing wear of solid-state storage media associated with the physical storage region using memory operations bounded to the physical storage region.