摘要:
An Electrostatic Discharge (ESD) protection device extends the protection range of an ESD clamp circuit through hysteresis of the associated ESD clamp control circuit. Once the ESD clamp circuit is activated, an adjustment circuit applies a trigger level adjustment signal to the ESD clamp control circuit. The trigger level adjustment signal effectively increases the magnitude of the deactivation signal that is required to deactivate the ESD clamp circuit. Since the deactivation signal increases over time, a longer activation time of the ESD protection device is provided, which allows an extended protection range.
摘要:
An Electrostatic Discharge (ESD) protection circuit activates an ESD conduction circuit in response to an ESD event. A deactivation circuit generates an exponentially increasing deactivation signal in response to the ESD event, such that once the deactivation signal has increased to a trigger point of a control circuit, the ESD conduction circuit is deactivated. An active resistance component within the deactivation circuit incorporates a biasing element to maintain a resistance value of the active resistance component substantially constant over all operating conditions.
摘要:
An input/output (“I/O”) circuit has a first N-channel metal-oxide semiconductor (“NMOS”) field-effect transistor (“FET”) coupled to the input pin with a silicide block. A first P-channel metal-oxide semiconductor (“PMOS”) FET is directly connected to the input pin, with its N-well electrically coupled to an ESD well bias circuit. An NMOS low-voltage differential signal (“LVDS”) driver is also directly connected to the input pin, and has cascaded NMOS FETs. The first NMOS FET of the LVDS driver is fabricated within a first P-tap guard ring electrically coupled to ground and an N-well guard ring coupled to the ESD well bias. The second NMOS FET of the LVDS driver is fabricated within a second P-tap guard ring electrically coupled to ground.
摘要:
An input/output (“I/O”) circuit has a first N-channel metal-oxide semiconductor (“NMOS”) field-effect transistor (“FET”) coupled to the input pin with a silicide block. A first P-channel metal-oxide semiconductor (“PMOS”) FET is directly connected to the input pin, with its N-well electrically coupled to an ESD well bias circuit. An NMOS low-voltage differential signal (“LVDS”) driver is also directly connected to the input pin, and has cascaded NMOS FETs. The first NMOS FET of the LVDS driver is fabricated within a first P-tap guard ring electrically coupled to ground and an N-well guard ring coupled to the ESD well bias. The second NMOS FET of the LVDS driver is fabricated within a second P-tap guard ring electrically coupled to ground.