摘要:
A method to simulate distillation of a petroleum stream by comprehensive two-dimensional gas chromatography including the step of separating said petroleum stream with a two-dimensional gas chromatograph to determine polarity as a function of temperature, and integrating vertically the two-dimensional gas chromatograph at a given temperature to determine signal intensity as a function of temperature.
摘要:
A method to simulate distillation of a petroleum stream by comprehensive two-dimensional gas chromatography including the step of separating said petroleum stream with a two-dimensional gas chromatograph to determine polarity as a function of temperature, and integrating vertically the two-dimensional gas chromatograph at a given temperature to determine signal intensity as a function of temperature.
摘要:
Two quantitative separation approaches to fractionate de-asphalted oils (DAOs) into seven classes of compounds (saturates, 1-4+ ring-aromatics, sulfides, and polars). In the first step (named as “SGS”) of present invention, the DAO of a petroleum vacuum resid is separated in to four classes of compounds, namely saturates, aromatics, and sulfides. In this first step of separation, about 3 grams of a DAO can be separated. Whereas in the second step (named as “ARC” separation) of invention, only less than 300 mg of the aromatic fraction obtained in “SGS” (described above) can be further fractionated at very low temperature (about −40 degrees centigrade) into 4 fractions, namely 1-ring, 2-ring, 3-ring, and 4+-ring aromatics. The present invention protocol is suitable for a wide range of compositionally different DAOs of petroleum vacuum resids.
摘要:
Two quantitative separation approaches to fractionate de-asphalted oils (DAOs) into seven classes of compounds (saturates, 1-4+ ring-aromatics, sulfides, and polars). In the first step (named as “SGS”) of present invention, the DAO of a petroleum vacuum resid is separated in to four classes of compounds, namely saturates, aromatics, and sulfides. In this first step of separation, about 3 grams of a DAO can be separated. Whereas in the second step (named as “ARC” separation) of invention, only less than 300 mg of the aromatic fraction obtained in “SGS” (described above) can be further fractionated at very low temperature (about −40 degrees centigrade) into 4 fractions, namely 1-ring, 2-ring, 3-ring, and 4+-ring aromatics. The present invention protocol is suitable for a wide range of compositionally different DAOs of petroleum vacuum resids.