Abstract:
Systems and methods of CO2 desublimation are presented in which refrigeration content is retained within the system. Most preferably, refrigeration content is recycled by providing the refrigeration content of a CO2-lean feed gas to the CO2-containing feed gas and to pre-cooling of a desublimator, and/or by providing refrigeration of effluent of a desublimator in regeneration to a refrigerant in a closed refrigeration cycle for deep-cooling of another desublimator.
Abstract:
A method of producing hydrogen comprising receiving a sour gas comprising CO2, H2S, and ammonia from a sour water stripper; introducing the sour gas to an absorption system to produce an ammonia rich gas and a sulfide rich gas, wherein the ammonia rich gas comprises ammonia and CO2, and wherein the sulfide rich gas comprises H2S and CO2; compressing the ammonia rich gas in a compressing unit to a pressure of 400-600 psig to produce a compressed ammonia rich gas; introducing the compressed ammonia rich gas to an ammonia cracker unit comprising a catalyst to produce a cracked gas, wherein the ammonia cracker unit is characterized by a cracking temperature of 450-550° C., and wherein the cracked gas comprises hydrogen, nitrogen, and CO2; and introducing the cracked gas to a PSA unit to produce hydrogen and a PSA tail gas, wherein the PSA tail gas comprises nitrogen and CO2.
Abstract:
A system for carbon dioxide capture from a gas mixture comprises a lean solvent comprising 3-amino-1-propanol (AP), 2-dimethylamino-2-methyl-1-propanol (DMAMP), and water; an absorber containing at least a portion of the lean solvent, wherein the absorber is configured to receive the lean solvent and a gaseous stream comprising carbon dioxide, contact the lean solvent with the gaseous stream, and produce a rich solvent stream and a gaseous stream depleted in carbon dioxide; a stripper, wherein the stripper is configured to receive the rich solvent stream; a cross-exchanger fluidly coupled to a rich solvent outlet on the absorber and a rich solvent inlet on the stripper; a reboiler fluidly coupled to a lower portion of the stripper; and a condenser fluidly coupled to a vapor outlet of the stripper.
Abstract:
A system for carbon dioxide capture from a gas mixture comprises an absorber that receives a lean solvent system stream (containing a chemical solvent, physical-solvent, and water) from the stripper, a stripper that receives the rich solvent stream from the absorber and produces the product carbon dioxide and the lean solvent through the use of a reboiler in fluid communication with a lower portion of the stripper, a condenser in fluid communication with a vapor outlet of the stripper, a cross-exchanger in fluid communication with a rich solvent system outlet from the absorber and a rich solvent system inlet on the stripper, and a splitter. The splitter is configured to separate the rich solvent system stream into a first portion and second portion, where the first portion directly passes to the stripper and the second portion passes through the cross-exchanger prior to passing to the stripper.
Abstract:
Systems and methods for pre-treatment of acid gas are presented in which ammonium is removed from the acid gas in an absorber that is operated at significantly elevated temperature using dilute phosphoric acid. While seemingly incompatible, absorbing ammonia at high heat in the absorber will allow for production of a diammonium phosphate product that is ultra-low in residual sulfurous compounds and prevent crystallization of phosphate salts due to the increased solubility of the salts in the hot diluted solvent.
Abstract:
A system for carbon dioxide capture from a gas mixture comprises a lean solvent comprising 3-amino-1-propanol (AP), 2-dimethylamino-2-methyl-1-propanol (DMAMP), and water; an absorber containing at least a portion of the lean solvent, wherein the absorber is configured to receive the lean solvent and a gaseous stream comprising carbon dioxide, contact the lean solvent with the gaseous stream, and produce a rich solvent stream and a gaseous stream depleted in carbon dioxide; a stripper, wherein the stripper is configured to receive the rich solvent stream; a cross-exchanger fluidly coupled to a rich solvent outlet on the absorber and a rich solvent inlet on the stripper; a reboiler fluidly coupled to a lower portion of the stripper; and a condenser fluidly coupled to a vapor outlet of the stripper.
Abstract:
A method of producing hydrogen comprising receiving a sour gas comprising CO2, H2S, and ammonia from a sour water stripper; introducing the sour gas to an absorption system to produce an ammonia rich gas and a sulfide rich gas, wherein the ammonia rich gas comprises ammonia and CO2, and wherein the sulfide rich gas comprises H2S and CO2; compressing the ammonia rich gas in a compressing unit to a pressure of 400-600 psig to produce a compressed ammonia rich gas; introducing the compressed ammonia rich gas to an ammonia cracker unit comprising a catalyst to produce a cracked gas, wherein the ammonia cracker unit is characterized by a cracking temperature of 450-550° C., and wherein the cracked gas comprises hydrogen, nitrogen, and CO2; and introducing the cracked gas to a PSA unit to produce hydrogen and a PSA tail gas, wherein the PSA tail gas comprises nitrogen and CO2.
Abstract:
A system for carbon dioxide capture from a gas mixture comprises an absorber that receives a lean solvent system stream (containing a chemical solvent, physical-solvent additive, and water) from the stripper, a stripper that receives the rich solvent stream from the absorber and produces the product carbon dioxide and the lean solvent through the use of a reboiler in fluid communication with a lower portion of the stripper, a condenser in fluid communication with a vapor outlet of the stripper, a cross-exchanger in fluid communication with a rich solvent system outlet from the absorber and a rich solvent system inlet on the stripper, and a splitter. The splitter is configured to separate the rich solvent system stream into a first portion and a second portion, where the first portion directly passes to the stripper and the second portion passes through the cross-exchanger prior to passing to the stripper.
Abstract:
Systems and methods for pre-treatment of acid gas are presented in which ammonium is removed from the acid gas in an absorber that is operated at significantly elevated temperature using dilute phosphoric acid. While seemingly incompatible, absorbing ammonia at high heat in the absorber will allow for production of a diammonium phosphate product that is ultra-low in residual sulfurous compounds and prevent crystallization of phosphate salts due to the increased solubility of the salts in the hot diluted solvent.
Abstract:
Systems and methods of CO2 desublimation are presented in which refrigeration content is retained within the system. Most preferably, refrigeration content is recycled by providing the refrigeration content of a CO2-lean feed gas to the CO2-containing feed gas and to pre-cooling of a desublimator, and/or by providing refrigeration of effluent of a desublimator in regeneration to a refrigerant in a closed refrigeration cycle for deep-cooling of another desublimator.