Abstract:
An optical system has the entire angle of view at a wide-angle end of not smaller than 90 degrees. A spatial frequency at which an MTF of the optical system acquired using an evaluation wavelength in a region of an image formation plane in which the distance from the center of the image formation plane is not less than 80% and less than 95% of half of the length of a diagonal line of an imaging surface of an imaging element image is not more than 30% is higher at the wide-angle end than at a telephoto end. When F≧√(Fw×Ft) is satisfied (where F indicates the focal length of the optical system when the target image is captured, Fw indicates the focal length at the wide-angle end, and Ft indicates the focal length at the telephoto end), a sharpening processing unit performs a restoration process based on an optical transfer function of the optical system as a sharpening process.
Abstract:
A restoration filter generation device which generates a restoration filter for performing a restoration process on luminance system image data, the restoration process being based on a point-image distribution in an optical system, the luminance system image data being image data relevant to luminance and being generated based on image data for each color of multiple colors, the restoration filter generation device including an MTF acquisition device which acquires a modulation transfer function MTF for the optical system; and a restoration filter generation device which generates the restoration filter based on the modulation transfer function MTF, the restoration filter suppressing an MTF value of image data for each color of the multiple colors to 1.0 or less at least in a region of a particular spatial frequency or less, the image data for each color of the multiple colors corresponding to the luminance system image data after the restoration process.
Abstract:
A restoration filter generation device which generates a restoration filter for performing a restoration process on luminance system image data, the restoration process being based on a point-image distribution in an optical system, the luminance system image data being image data relevant to luminance and being generated based on image data for each color of multiple colors, the restoration filter generation device including an MTF acquisition device which acquires a modulation transfer function MTF for the optical system; and a restoration filter generation device which generates the restoration filter based on the modulation transfer function MTF, the restoration filter suppressing an MTF value of image data for each color of the multiple colors to 1.0 or less at least in a region of a particular spatial frequency or less, the image data for each color of the multiple colors corresponding to the luminance system image data after the restoration process.
Abstract:
There are provided an image processing apparatus, an image processing method, and a program capable of realizing a desired image filtering process specified based on an optical characteristic of an individual optical system with high accuracy using a simple computation process. Further, there are provided a filter acquisition apparatus, a filter acquisition method, program, and a recording medium capable of acquiring a filter which is suitably usable in an image filtering process. A filtering process unit 41 (image processing apparatus 35) applies a filter to processing target data to acquire filter application process data, applies a gain to the filter application process data to acquire gain application process data, in each filtering process. In each filtering process, the gain applied to the filter application process data is acquired based on a target frequency characteristic of the image filtering process.
Abstract:
Disclosed are an image processing device, an imaging device, an image processing method, and an image processing program capable of, when recovering a deteriorated image due to a point spread function of an optical system, effectively performing phase recovery and suppressing the occurrence of artifact due to frequency recovery processing. The image processing device includes a phase recovery processing unit which subjects image data acquired from an imaging element by capturing an object image using an optical system to phase recovery processing using a phase recovery filter based on a point spread function of the optical system, a gradation correction processing unit which subjects image data subjected to the phase recovery processing to nonlinear gradation correction, and a frequency recovery processing unit which subjects image data subjected to the gradation correction to frequency recovery processing using a frequency recovery filter based on the point spread function of the optical system.
Abstract:
A restoration filter generation device according to one embodiment of the present invention includes: an information acquisition unit that acquires information showing a difference that depends on a color of an optical transfer function of an optical system; and a restoration filter generation unit that generates a restoration filter, which weakens restoration strength according to the difference that depends on the color of the optical transfer function on the basis of the information acquired by the information acquisition unit, and makes the restoration strength of the restoration filter weaker than the restoration strength of an ideal filter decided assuming that the difference that depends on the color of the optical transfer function does not exist. As a result, the overcorrection is reduced.
Abstract:
An image processing device according to an embodiment of the present invention obtains recovery image data by performing restoration processing using a restoration filter based on a point spread function of an optical system, on original image data obtained from an imaging element by imaging using the optical system. The restoration filter used in this restoration processing (a combination filter and realization filter Fr) is generated by combining multiple base filters Fb. Base filter Fb may be arbitrarily selected from filters that are confirmed beforehand to be effective to prevent image quality degradation.
Abstract:
An imaging lens includes, in order from the object side, a first lens group fixed during focusing, a positive second lens group moved toward the object side during focusing from a distant to a close object, and a third lens group fixed during focusing and including one positive lens. The second group includes, in order from the object side, a first cemented lens including a biconvex lens and a negative lens having a smaller absolute value of curvature radius of the object-side surface than of the image-side surface, and a second cemented lens having a positive refractive power and including a negative lens having a smaller absolute value of curvature radius of the image-side surface than of the object-side surface and a positive lens having a smaller absolute value of curvature radius of the object-side surface than of the image-side surface. The imaging lens satisfies specific condition expressions.
Abstract:
An imaging device 10 according to an aspect of the present invention includes: an image generation section 100 that generates a moving image; a filter acquisition section 105 that acquires a restoration filter corresponding to a transfer function for the point distribution of an optical system; an aperture value detection section 110 that detects an aperture value of the optical system; a restoration processing determination section 115 that determines whether or not the aperture value detected by the aperture value detection section 110 is equal to or greater than a small-aperture-blurring reference aperture value; and a restoration processing execution section 120 that executes the restoration processing on the moving image through the restoration filter, in case where the restoration processing determination section 115 determines that the aperture value detected by the aperture value detection section 110 is equal to or greater than the small-aperture-blurring reference aperture value.
Abstract:
Disclosed is a technique capable of efficiently storing and retaining characteristic data (a restoration filter or the like) of an optical system used for a restoration process in a storage unit with limited storage capacity in consideration of the degree of image restoration. An image processing device includes a characteristic data storage unit 42 which is capable of storing characteristic data of a plurality of types of optical systems, and a restoration processing unit which subjects source image data to a restoration process using a restoration filter based on a point spread function of an optical system to acquire recovered image data. In case where storing new characteristic data in the characteristic data storage unit, characteristic data which is stored in the characteristic data storage unit 42 is controlled based on a restoration evaluation value which is allocated to characteristic data according to the type of optical system.