摘要:
Electrochemical systems for mitigating or reducing the release of undesirable by-products of electrochemical cells are provided. These systems may be particularly relevant to the sequestering of hydrogen sulfide gas in solid state electrochemical cells with sulfide-based electrolytes. Some of the systems include an integrated hydrogen sulfide eliminating layer or microspheres containing a hydrogen sulfide eliminating material adjacent to one or more electrochemical cells and within a containment structure.
摘要:
A Li-ion battery includes a cathode; an anode having a primary active material, conductive carbon, binder, and reserve material; and a separator between the cathode and anode. The reserve material has a reaction potential between a lithium reaction potential and a primary active material reaction potential. The reserve material is configured to intercalate with lithium at the reaction potential responsive to the primary active material being fully intercalated to inhibit lithium plating on the anode.
摘要:
A method of making a solid state battery may include heating a flux sandwiched between a solid ceramic electrolyte and a group one metal. The flux may be heated such that it roughens a surface of the solid ceramic electrolyte and the group one metal melts and adheres to the surface of the solid ceramic electrolyte.
摘要:
A battery electrode material includes a composition of (A) a charge-conducting radical polymer, (B) poly[poly(ethylene oxide) methyl ether methacrylate] (PPEGMA); and (A) a lithium salt, the composition being a mixed ionic and electronic conductor with ionic conductivity at room temperature of at least about 10−4 S/cm and electronic conductivity of at least about 10−3 S/cm.
摘要:
A pre-sintered all-solid-state battery comprises a powdered lithium titanate (LTO), a powdered lithium lanthanum titanium oxide (LLTO), and a solid lithium compound configured to suppress formation of inactive phases during sintering. The solid lithium compound is about 0.5% to 10% by weight of the pre-sintered all-solid-state battery.
摘要:
A method of producing a solid state battery includes pre-coating a solid electrolyte surface with a metal to form a sacrificial layer and contacting a metal alloy with the sacrificial layer such that the sacrificial layer and the metal alloy react to form a eutectic liquid metal interface layer, at room temperature and between the electrolyte and a lithium anode, configured to alloy with the liquid metal interface layer at operating potential.
摘要:
A method of making a solid state battery may include heating a flux sandwiched between a solid ceramic electrolyte and a group one metal. The flux may be heated such that it roughens a surface of the solid ceramic electrolyte and the group one metal melts and adheres to the surface of the solid ceramic electrolyte.
摘要:
A solid state battery includes a flexible polymer sheet, and an array of solid state pillars supported by and extending through the sheet. Each of the pillars has an anode layer, a cathode layer adjacent, and an inorganic solid electrolyte (ISE) layer interposed between the anode and cathode layers. A flexible electrochemical membrane includes a flexible polymer sheet, and an array of inorganic solid electrolyte pillars supported by the polymer sheet with each of the pillars extending through a thickness of the sheet to form an ionically conductive pathway therethrough.
摘要:
In at least one embodiment, a battery is provided comprising an anode and cathode, a separator between the anode and cathode, and a shutdown layer between the separator and the anode or cathode. The shutdown layer may include low melting point material and a conductive material within the low melting point material forming a conductive network within the shutdown layer. At a melting point temperature of the low melting point material, the conductive network is reduced such that at least a portion of the shutdown layer is substantially electrically non-conductive. The shutdown layer may be a free-standing layer or may be coated one or both of the electrodes.
摘要:
A solid polymer electrolyte having a reinforcing substrate, a polymer having ethylene oxide portions and hydrocarbon portions with pendent functional groups having high relative permittivity for an electrochemical cell is provided. The solid polymer electrolyte may provide good ionic conductivity at room temperature and good mechanical strength.