Abstract:
A method of treating a defective mitral valve includes inserting a delivery catheter through a small incision in a patient's groin, wherein the delivery catheter has a prosthetic device positioned along a distal end thereof. The prosthetic device includes an insert member and an anchoring member, wherein the insert member is made from a shape memory material and is surrounded by a biocompatible fabric outer layer. The insert member is positioned within a mitral valve and self-expands in a gap between the native leaflets. The anchoring member is attached to surrounding tissue. After deployment of the prosthetic device, the native leaflets of the mitral valve form a tight seal against the biocompatible fabric outer layer and the insert member fills the gap between the native leaflets of the mitral valve for preventing regurgitation during ventricular systole.
Abstract:
Disclosed herein are devices for improving coaption of the mitral valve leaflets to reduce or eliminate mitral valve regurgitation. The devices may be used to perform mitral valve annuloplasty, or to serve as a docking station for a transcatheter prosthetic heart valve. The various embodiments of devices are configured for percutaneous and, in some cases, transvascular delivery. Delivery systems useful for routing the devices to the mitral valve are also disclosed, including catheters, balloons and/or mechanical expansion systems. The devices themselves include at least one tissue penetrating member. Methods of delivery include partially embedding the devices in the mitral valve annulus via at least one tissue penetrating member. Tissue penetrating members may be embedded into the tissue in a simultaneous or a nearly simultaneous fashion. Upon embedding, the devices employ various expansion and/or contraction features to adjust the mitral valve diameter. Adjustments may continue until the leaflets fully coapt and the problem of mitral regurgitation is reduced or eliminated.
Abstract:
A medical device configured for placement in a blood vessel, in which an elastic tube extends between first and second expandable anchoring stents. The elastic tube is constructed of a resilient material that deflects outward in response to increased blood pressure of a heart beat and that moves back inward as the blood pressure drops, thereby aiding the heart's pumping action.
Abstract:
A device for reshaping the tricuspid valve comprises a stent that is deployed in the right ventricular outflow tract (RVOT) adjacent to the tricuspid valve and expanded to a size sufficient to reduce the annular diameter or size of the tricuspid valve, thereby improving coaptation of the leaflets and reducing regurgitation. Embodiments of the device are deliverable percutaneously.
Abstract:
Disclosed herein are devices for improving coaption of the mitral valve leaflets to reduce or eliminate mitral valve regurgitation. The devices may be used to perform mitral valve annuloplasty, or to serve as a docking station for a transcatheter prosthetic heart valve. The various embodiments of devices are configured for percutaneous and, in some cases, transvascular delivery. Delivery systems useful for routing the devices to the mitral valve are also disclosed, including catheters, balloons and/or mechanical expansion systems. The devices themselves include at least one tissue penetrating member. Methods of delivery include partially embedding the devices in the mitral valve annulus via at least one tissue penetrating member. Tissue penetrating members may be embedded into the tissue in a simultaneous or a nearly simultaneous fashion. Upon embedding, the devices employ various expansion and/or contraction features to adjust the mitral valve diameter. Adjustments may continue until the leaflets fully coapt and the problem of mitral regurgitation is reduced or eliminated.
Abstract:
Methods and devices for increasing flow in the left atrial appendage (LAA) include a conduit directing blood flow from a pulmonary artery into the LAA and/or a conduit drawing blood from the LAA by a Bernoulli effect. In one embodiment, a method comprises implanting a conduit in a pulmonary vein, expanding an inlet portion such that the conduit becomes anchored within the vein and directs blood through an outlet portion of the conduit into or toward the left atrial appendage.
Abstract:
Disclosed herein are devices for improving coaption of the mitral valve leaflets to reduce or eliminate mitral valve regurgitation. The devices may be used to perform mitral valve annuloplasty, or to serve as a docking station for a transcatheter prosthetic heart valve. The various embodiments of devices are configured for percutaneous and, in some cases, transvascular delivery. Delivery systems useful for routing the devices to the mitral valve are also disclosed, including catheters, balloons and/or mechanical expansion systems. The devices themselves include at least one tissue penetrating member. Methods of delivery include partially embedding the devices in the mitral valve annulus via at least one tissue penetrating member. Tissue penetrating members may be embedded into the tissue in a simultaneous or a nearly simultaneous fashion. Upon embedding, the devices employ various expansion and/or contraction features to adjust the mitral valve diameter. Adjustments may continue until the leaflets fully coapt and the problem of mitral regurgitation is reduced or eliminated.
Abstract:
A medical device configured for placement in a blood vessel, in which an elastic tube extends between first and second expandable anchoring stents. The elastic tube is constructed of a resilient material that deflects outward in response to increased blood pressure of a heart beat and that moves back inward as the blood pressure drops, thereby aiding the heart's pumping action.
Abstract:
Embodiments of a method for implanting a prosthetic valve at the native mitral valve region of the heart, the prosthetic valve including a main body that is radially compressible to a radially compressed state and self-expandable from the compressed state to a radially expanded state. The prosthetic apparatus also comprises at least one ventricular anchor coupled to the main body and disposed outside of the main body with a leaflet-receiving space between the anchor and an outer surface of the main body to receive a native valve leaflet. Apparatus for delivering and implanting the prosthetic valve are also described.
Abstract:
Devices, systems and methods are described herein to provide improved treatment of a tricuspid valve. Such treatment may include tricuspid valve replacement, which may include providing a prosthetic tricuspid valve within the tricuspid valve annulus. Delivery systems for delivering the prosthetic tricuspid valve to the tricuspid valve annulus are disclosed herein. Treatment may also include repair of the tricuspid valve.