Abstract:
Provided is a chemical sensor which includes an alignment frame that has an opening that passes through the inside of the alignment frame and includes first and second side portions that face each other with the opening therebetween and insulation portions disposed between the first and second side portions, a plurality of sensing fibers disposed in two-dimensions across the opening of the alignment frame so as to connect the first side portion and the second side portion, and a source pattern and a drain pattern connected to the first side portion and the second side portion of the alignment frame, respectively.
Abstract:
The present invention relates to a method of fabricating a nanowire and graphene-sheet hybrid structure, and a transparent electrode employing the same, in which a hybrid structure, in which a graphene sheet is attached on surfaces of nanowires, is fabricated by fabricating a line pattern, in which nanowires are aligned in a longitudinal direction, by using an electro-spinning method, and then additionally employing a dipping method of dipping the line pattern in a graphene sheet dispersed solution, and the fabricated hybrid structure is applied to the transparent electrode. Accordingly, a crosslinking portion is increased by decreasing a distance between nanowires present inside the line pattern to improve a conductive property of a nanowire metal line. Further, the nanowire with a relative uniform density is present within the fabricated line pattern, so that when the line pattern is fabricated on the entire substrate, it is possible to achieve a uniform distribution of nanowires over a large area. Further, the surfaces of the nanowires are covered by the graphene sheet by adopting the dipping process of dipping the nanowire line pattern in a dispersion solution in which the graphene sheet is evenly dispersed, thereby preventing oxidation of the nanowire due to a contact with air during a thermal treatment process.
Abstract:
A light emitting diode includes: a substrate; an n-type semiconductor layer disposed on the substrate; an active layer disposed on the n-type semiconductor layer; a p-type semiconductor layer disposed on the active layer; a first electrode disposed on the p-type semiconductor layer and made of a metal oxide; a second electrode disposed on the first electrode and made of graphene; a p-type electrode disposed on the second electrode; and an n-type electrode disposed on the n-type semiconductor layer, wherein a work function of the first electrode is less than a work function of the p-type semiconductor layer, but is greater than a work function of the second electrode.
Abstract:
A DNA analysis system that controls DNA analysis by wireless using an application of a mobile device and a very small DNA analysis apparatus, and that receives a DNA analysis result in real time on the spot is provided. Therefore, by performing DNA analysis by simultaneously controlling a plurality of small DNA analysis apparatuses using signal processing and screen display functions of a mobile device, analysis speed of DNA is improved, and an analysis result of DNA can be provided in real time. Further, by forming a DNA analysis apparatus in a very small size, DNA can be immediately analyzed with low power consumption on the spot using a small sample, and the DNA analysis apparatus can be carried.
Abstract:
Provided is a gas sensor including a substrate, a sensing electrode extended in a first direction on the substrate, and a plurality of heaters disposed in a second direction crossing the first direction on the substrate. The plurality of heaters is separated at both sides of the sensing electrode. The plurality of heaters includes graphene.
Abstract:
An electro spinning apparatus according to embodiments of the inventive concept includes a nozzle unit discharging nano fiber on a substrate, and an alignment device having the substrate disposed thereon and aligning the nano fiber, wherein the alignment device includes a body and an angle adjustment unit adjusting an angle formed by a straight line connecting two electrodes disposed to face each other among the electrodes and the substrate.
Abstract:
Disclosed is a method of manufacturing a junction electronic device by disposing 2-Dimensional (2D) materials at desired positions by chemically exfoliating the 2D materials, and the method includes: forming a pattern by surface-treating a surface of a substrate; transferring a 2D material by spraying a liquid solution, in which 2D material flakes are dissolved, onto the substrate on which the pattern is formed; forming first electrodes at both sides of the 2D material disposed on the substrate; forming a dielectric layer on the first electrodes; and forming a second electrode on the dielectric layer.
Abstract:
A method of transferring graphene is provided. A method of transferring graphene in accordance with an exemplary embodiment of the present invention may include forming a graphene layer by composing graphene and a base layer, depositing a self-assembled monolayer on the graphene layer, and separating a combination layer comprising the self-assembled monolayer and the graphene layer from the base layer.
Abstract:
A stretchable electronic device includes a flexible substrate, a conductive fiber pattern formed on the flexible substrate, the conductive fiber pattern having a repetitive circular structure, and a graphene material attached to the conductive fiber pattern.
Abstract:
A light emitting diode includes: a substrate; an n-type semiconductor layer disposed on the substrate; an active layer disposed on the n-type semiconductor layer; a p-type semiconductor layer disposed on the active layer; a first electrode disposed on the p-type semiconductor layer and made of a metal oxide; a second electrode disposed on the first electrode and made of graphene; a p-type electrode disposed on the second electrode; and an n-type electrode disposed on the n-type semiconductor layer, wherein a work function of the first electrode is less than a work function of the p-type semiconductor layer, but is greater than a to work function of the second electrode.