Abstract:
Knitting machines are used to intermesh conductive yarns into loops resulting in knitted fabrics. The knitting machine is adapted to import different types of yarns (conductive and non-conductive) directly into the knit structure. Combining conductive yarns and knitting systems allows for integration of electrical or mechanical component designs into existing clothing fabrication processes, avoiding current limitations of attaching or gluing conductive fabrics or other components over various materials. Starting with a planar design of an antenna, RFID tag, or some other electronic structure, the layout is converted into a CAD knitting program including a grid representing stitches. The CAD specifications of the final design/product are exported to the knitting machines so that the knitting machine may make conductive fabrics in accordance with the CAD specifications. The conductive fabrics are knitted into a variety of garments that monitor the vital signs of the wearer, including the fetus of an expectant mother.
Abstract:
A planar reconfigurable antenna that is capable of generating omnidirectional and directional radiation patterns over a wide frequency band or over multiple frequency bands includes a substrate, one or more pairs of conductive elements on at least one side of the substrate, a common RF feed point, and respective switches that selectively connects one or all of the conductive elements to the common RF feed point. An omni-directional radiation pattern is generated when all of the conductive elements are connected to the common RF feed point, while a directional radiation pattern is generated when only a pair of conductive elements on opposite sides of the substrate are connected to the common RF feed point. In the directional radiation mode, the conductive elements that are not connected to the common RF feed point act as a reflector for other conductive elements that are connected to the common RF feed point.
Abstract:
A planar reconfigurable antenna that is capable of generating omnidirectional and directional radiation patterns over a wide frequency band or over multiple frequency bands includes a substrate, one or more pairs of conductive elements on at least one side of the substrate, a common RF feed point, and respective switches that selectively connects one or all of the conductive elements to the common RF feed point. An omni-directional radiation pattern is generated when all of the conductive elements are connected to the common RF feed point, while a directional radiation pattern is generated when only a pair of conductive elements on opposite sides of the substrate are connected to the common RF feed point. In the directional radiation mode, the conductive elements that are not connected to the common RF feed point act as a reflector for other conductive elements that are connected to the common RF feed point.
Abstract:
A wearable power harvesting system includes a knitted fabric rectenna including an antenna adapted to receive radio-frequency energy within a desired frequency band and a rectifier circuit that converts received radio-frequency energy into a DC current and voltage. A knitted fabric load/storage unit stores DC power from the rectifier circuit. The power harvesting system is adapted to harvest the radio-frequency energy within the desired frequency band, which may include WLAN frequencies such as the standard 2.4 GHz and 5 GHz WLAN standard frequencies.
Abstract:
Composite Right/Left Handed (CRLH) Leaky-Wave Antennas (LWAs) are a class of radiating elements characterized by an electronically steerable radiation pattern. The design is comprised of a cascade of CRLH unit-cells populated with varactor diodes. By varying the voltage across the varactor diodes, the antenna can steer its directional beam from broadside to backward and forward end-fire directions. A CRLH Leaky-Wave Antenna for the 2.4 GHz Wi-Fi band is miniaturized by etching a Complementary Split-Ring Resonator (CSRR) underneath each CRLH unit-cell. As opposed to conventional LWA designs, the LWA layout does not require thin interdigital capacitors, significantly reducing the PCB manufacturing constraints required to achieve size reduction. The resulting antenna enables CRLH LWAs to be used not only for wireless access points, but also potentially for mobile devices.
Abstract:
A wearable power harvesting system includes a knitted fabric rectenna including an antenna adapted to receive radio-frequency energy within a desired frequency band and a rectifier circuit that converts received radio-frequency energy into a DC current and voltage. A knitted fabric load/storage unit stores DC power from the rectifier circuit. The power harvesting system is adapted to harvest the radio-frequency energy within the desired frequency band, which may include WLAN frequencies such as the standard 2.4 GHz and 5 GHz WLAN standard frequencies.
Abstract:
Composite Right/Left Handed (CRLH) Leaky-Wave Antennas (LWAs) are a class of radiating elements characterized by an electronically steerable radiation pattern. The design is comprised of a cascade of CRLH unit-cells populated with varactor diodes. By varying the voltage across the varactor diodes, the antenna can steer its directional beam from broadside to backward and forward end-fire directions. A CRLH Leaky-Wave Antenna for the 2.4 GHz Wi-Fi band is miniaturized by etching a Complementary Split-Ring Resonator (CSRR) underneath each CRLH unit-cell. As opposed to conventional LWA designs, the LWA layout does not require thin interdigital capacitors, significantly reducing the PCB manufacturing constraints required to achieve size reduction. The resulting antenna enables CRLH LWAs to be used not only for wireless access points, but also potentially for mobile devices.