Abstract:
Coding syntaxes in compliance with same or different VDR specifications may be signaled by upstream coding devices such as VDR encoders to downstream coding devices such as VDR decoders in a common vehicle in the form of RPU data units. VDR coding operations and operational parameters may be specified as sequence level, frame level, or partition level syntax elements in a coding syntax. Syntax elements in a coding syntax may be coded directly in one or more current RPU data units under a current RPU ID, predicted from other partitions/segments/ranges previously sent with the same current RPU ID, or predicted from other frame level or sequence level syntax elements previously sent with a previous RPU ID. A downstream device may perform decoding operations on multi-layered input image data based on received coding syntaxes to construct VDR images.
Abstract:
Novel methods and systems for image processing and gamut mapping are disclosed, where image parameters in a first color space are transformed into parameters in a second color space. In one example, the gamut mapping system processes the image parameters in a parametrized space using substantially rectangular spectral functions. In another example, the gamut mapping system processes the image parameters in a parametrized space using smooth spectral functions. The smooth spectral functions may include a linear combination of functions, including at least a cosine square function. Image parameters may include an intensity parameter, a center wavelength parameter, and a saturation parameter.
Abstract:
Coding syntaxes in compliance with same or different VDR specifications may be signaled by upstream coding devices such as VDR encoders to downstream coding devices such as VDR decoders in a common vehicle in the form of RPU data units. VDR coding operations and operational parameters may be specified as sequence level, frame level, or partition level syntax elements in a coding syntax. Syntax elements in a coding syntax may be coded directly in one or more current RPU data units under a current RPU ID, predicted from other partitions/segments/ranges previously sent with the same current RPU ID, or predicted from other frame level or sequence level syntax elements previously sent with a previous RPU ID. A downstream device may perform decoding operations on multi-layered input image data based on received coding syntaxes to construct VDR images.
Abstract:
Inter-color image prediction is based on color grading modeling. Prediction is applied to the efficient coding of images and video signals of high dynamic range. Prediction models may include a color transformation matrix that models hue and saturation color changes and a non-linear function modeling color correction changes. Under the assumption that the color grading process uses a slope, offset, and power (SOP) operations, an example non linear prediction model is presented.
Abstract:
A substantially rectangular spectral representation is synthesized, which is adapted to produce image capture device sensor outputs if applied to an image capture device. The synthesized substantially rectangular spectral representation can be utilized in generating output color values of an output color space from image capture device sensor outputs, where the image capture device sensor outputs correspond to an image captured by an image capture device. The generated output color values correspond to colors perceived by the human visual system for the same image as that captured by the image capture device. Image capture device gamut is also determined.
Abstract:
An inter-layer reference picture is generated either by considering an inverse mapped signal from a base layer, a temporal signal from an enhancement layer, or a combination of both.
Abstract:
A substantially rectangular spectral representation is synthesized, which is adapted to produce either (a) image capture device sensor outputs if applied to an image capture device or (b) color values if applied to corresponding analysis functions. Spectral expansion, which can be used in various image processing methods, is achieved with the synthesized spectral representation.
Abstract:
Inter-color image prediction is based on color grading modeling. Prediction is applied to the efficient coding of images and video signals of high dynamic range. Prediction models may include a color transformation matrix that models hue and saturation color changes and a non-linear function modeling color correction changes. Under the assumption that the color grading process uses a slope, offset, and power (SOP) operations, an example non linear prediction model is presented.
Abstract:
Enhancing image dynamic range is described. An input video signal that is represented in a first color space with a first color gamut, which is related to a first dynamic range, is converted to a video signal that is represented in a second color space with a second color gamut. The second color space is associated with a second dynamic range. At least two (e.g., three) color-related components of the converted video signal are mapped over the second dynamic range.
Abstract:
A substantially rectangular spectral representation is synthesized, which is adapted to produce either (a) image capture device sensor outputs if applied to an image capture device or (b) color values if applied to corresponding analysis functions. Spectral expansion, which can be used in various image processing methods, is achieved with the synthesized spectral representation.