摘要:
Particular embodiments perform a light path analysis of an image comprising a scene, wherein the scene comprises at least one refractive or reflective object. The image may be decomposed based on the light path analysis into a plurality of components, each of the components representing a contribution to lighting in the scene by a different type of light interaction. For each of the components, one or more motion vectors are extracted for each of the components in order to capture motion in the scene. Finally, a final contribution of each of the components to the image is computed based on the motion vectors.
摘要:
Systems and methods for generating a panoramic video from unstructured camera arrays. The systems and methods are configured to statically align corresponding image-frames of respective input video streams, warp the aligned image-frames according to a warping-order, and relax the warped image-frames thereby generating a temporally coherent panoramic video. Methods according to embodiments this invention utilize a new parallax-warping-error metric that is devised to capture structural differences created by parallax artifacts. The parallax-warping-error metric is effective in finding an optimal warping-order and in driving the warping process, resulting in a panoramic video with minimal parallax artifacts.
摘要:
This disclosure relates to system and methods for segmenting a video in a higher order dimensional space. A video may be segmented by obtaining visual information defining an image of the video. The visual information may include pixels of the image and may be represented in a display space having a first dimensionality. A designation of a subset of the visual information represented in the display space as a part of an object portrayed in the image may be obtained. The visual information and the designation may be represented in the higher order dimensional space having a second dimensionality greater than the first dimensionality. An association of the visual information represented in the higher order dimensional space with the object may be obtained. The association may be correlated with the visual information represented in the display space. The correlation may define a location of the object in the image.
摘要:
Interpolating frames of a video may provide a technique for one or more of frame rate conversion, temporal upsampling for generating slow motion video, image morphing, virtual view synthesis, and/or other video applications. A system may be configured to interpolated frames of a video by leveraging frequency domain representations of individual frames. The frequency domain representations may be decomposed into set of discrete functions that make up the frequency domain representations. Corresponding functions from sets of functions associated with frames with which an interpolated frame is to be determined may be identified. Phase differences between corresponding functions may be determined. Interpolated functions between the corresponding functions may be determined based on the determined phased differences. Information describing spatial domain representations of interpolated frames may be determined based on the interpolated functions.
摘要:
Systems and methods for generating a panoramic video from unstructured camera arrays. The systems and methods are configured to statically align corresponding image-frames of respective input video streams, warp the aligned image-frames according to a warping-order, and relax the warped image-frames thereby generating a temporally coherent panoramic video. Methods according to embodiments this invention utilize a new parallax-warping-error metric that is devised to capture structural differences created by parallax artifacts. The parallax-warping-error metric is effective in finding an optimal warping-order and in driving the warping process, resulting in a panoramic video with minimal parallax artifacts.
摘要:
Scenes reconstruction may be performed using videos that capture the scenes at high resolution and frame rate. Scene reconstruction may be associated with determining camera orientation and/or location (“camera pose”) throughout the video, three-dimensional coordinates of feature points detected in frames of the video, and/or other information. Individual videos may have multiple frames. Feature points may be detected in, and tracked over, the frames. Estimations of camera pose may be made for individual subsets of frames. One or more estimations of camera pose may be determined as fixed estimations. The estimated camera poses for the frames included in the subsets of frames may be updated based on the fixed estimations. Camera pose for frames not included in the subsets of frames may be determined to provide globally consistent camera poses and three-dimensional coordinates for feature points of the video.
摘要:
Particular embodiments decompose an image comprising a scene into a diffuse component and a specular component. Each of the components represent a contribution to lighting in the scene. A set of motion vectors may be extracted in order to capture motion in the scene. Finally, a final contribution of each of the components to the image may be computed based on the motion vectors.
摘要:
This disclosure relates to system and methods for segmenting a video in a higher order dimensional space. A video may be segmented by obtaining visual information defining an image of the video. The visual information may include pixels of the image and may be represented in a display space having a first dimensionality. A designation of a subset of the visual information represented in the display space as a part of an object portrayed in the image may be obtained. The visual information and the designation may be represented in the higher order dimensional space having a second dimensionality greater than the first dimensionality. An association of the visual information represented in the higher order dimensional space with the object may be obtained. The association may be correlated with the visual information represented in the display space. The correlation may define a location of the object in the image.
摘要:
Particular embodiments decompose an image comprising a scene into a diffuse component and a specular component. Each of the components represent a contribution to lighting in the scene. A set of motion vectors may be extracted in order to capture motion in the scene. Finally, a final contribution of each of the components to the image may be computed based on the motion vectors.
摘要:
Particular embodiments perform a light path analysis of an image comprising a scene, wherein the scene comprises at least one refractive or reflective object. The image may be decomposed based on the light path analysis into a plurality of components, each of the components representing a contribution to lighting in the scene by a different type of light interaction. For each of the components, one or more motion vectors are extracted for each of the components in order to capture motion in the scene. Finally, a final contribution of each of the components to the image is computed based on the motion vectors.