Abstract:
A power conversion system mainly includes an input capacitor bank, a first conversion circuit, a second conversion circuit, and a control circuit. The input capacitor bank has a first capacitor and a second capacitor. The first capacitor and the second capacitor are connected to a neutral point and receive a DC input voltage. The first conversion circuit is connected in parallel to the input capacitor bank, and has a first branch, a second branch, and a first auxiliary branch. The second conversion circuit is connected in parallel to the input capacitor bank, and has a third branch, a fourth branch, and a second auxiliary branch. The control circuit produces a plurality of control signals to correspondingly control the first conversion circuit and the second conversion circuit so as to reduce leakage current caused by parasitic capacitance voltage.
Abstract:
An inverter apparatus includes a first capacitor, a second capacitor, a first switch, a second switch, a third switch, a fourth switch, a first inductor and a second inductor. The first capacitor, the second capacitor, the first switch, the third switch and the first inductor form and have functions of a half bridge inverter. The first capacitor, the second capacitor, the second switch, the fourth switch and the second inductor form and have functions of a half bridge inverter. Therefore, the present invention obtains two kinds of voltages.
Abstract:
A solar photovoltaic power conversion system is provided to convert a DC input voltage into an AC output voltage, which mainly includes an input capacitor bank, a first switching circuit, a second switching circuit, a first filtering circuit, a second filtering circuit, and a control circuit. The first switching circuit has a first power switch and a second power switch. The second switching circuit has a third power switch and a fourth power switch. The control circuit produces a first control signal, a second control signal, a third control signal, and a fourth control signal to respectively control the first power switch, the second power switch, the third power switch, and the fourth power switch so as to reduce leakage current of the DC input voltage caused by parasitic capacitance voltage.
Abstract:
A DC-to-AC power conversion system is provided to convert a DC input voltage into an AC output voltage, which mainly includes a bridge switching circuit, an auxiliary switch circuit, and a control circuit. The bridge switching circuit has a first power switch, a second power switch, a third power switch, and a fourth power switch. The auxiliary switch circuit has a fifth power switch, a sixth power switch, a seventh power switch, and an eighth power switch. The control circuit produces a complementary switching signal pair to control the first and fourth power switches and the second and third power switches, respectively. In addition, the control circuit produces a complementary level signal pair to control the sixth and seventh power switches and the fifth and eighth power switches, respectively.
Abstract:
A smart switch system (20) includes a smart switch box (10). The smart switch box (10) includes a switch box output side (102), an output-side voltage detection unit (104), a switch control unit (106), a switch unit (108) and a switch box input side (110). The output-side voltage detection unit (104) detects a voltage of the switch box output side (102) and informs the switch control unit (106) of the voltage of the switch box output side (102). According to the voltage of the switch box output side (102), the switch control unit (106) turns on or off the switch unit (108). When the switch control unit (106) turns on the switch unit (108), an input voltage (112) sent from a direct-current voltage generation apparatus (50) is sent to the switch box output side (102) through the switch box input side (110) and the switch unit (108).
Abstract:
A power converting device includes a DC-DC converting circuit, a DC-AC converting circuit, and an insulation detecting circuit. The DC-DC converting circuit is configured to convert a DC input voltage to a DC bus voltage. The DC-AC converting circuit is electrically coupled to the DC-DC converting circuit and configured to convert the DC bus voltage to an AC voltage. The insulation detecting circuit is electrically coupled between the DC-DC converting circuit and the DC-AC converting circuit. The insulation detecting circuit is configured to detect a ground impedance value of the power converting device according to the DC bus voltage.