Abstract:
The present teachings disclose a wire mesh heater including: a wire mesh element having a surface area including a non-contact area and a contact area along at least 50% of a wire mesh element length; a primary conductor including a slit having a contact surface, wherein the contact area contacts the contact surface to provide an electrical connection between the wire mesh element and the primary conductor. In some embodiments, the primary conductor is welded to the wire mesh element, wherein the contact area contacts the contact surface to provide an electrical connection between the wire mesh element and the primary conductor. In some embodiments, an elastic is stretched and secured tautly under tension prior to operation of the wire mesh heater, and the elastic keeps the wire mesh element tautly under tension during operation of the wire mesh heater.
Abstract:
A system and process for cooking a consumable food product for an accelerated time period is described. The a system and process for cooking a food product comprising selectively heating primarily the interior of a food product, and searing the exterior of the food product using a radiative oven, wherein the radiative oven operates at greater than 900° Fahrenheit and reaches the operating temperature from an ambient temperature in a duration that is less than 30 seconds. A vending machine including the system and process of cooking is also described.
Abstract:
A microwave wire mesh oven including: a microwave oven cavity; a wire mesh element positioned to radiate black body radiation into the microwave oven cavity; and a magnetron configured to generate microwaves, wherein some of the generated microwaves impinge on the wire mesh element.
Abstract:
A system including a conveyance system and a stored energy cooking oven. The mobile system for heating a product including: an oven including wire mesh heating elements arranged in a parallel circuit and configured to reach 1400 Kelvin in less than about 30 seconds, wherein the heating elements are shaped to include a surface radiating heat; a stored energy device configured to provide direct current to energize the heating elements; and a conveyer configured to convey the product to a heating position facing the surface radiating heat, wherein a distance of an outer surface of the product is less than six inches from the surface radiating heat.
Abstract:
Disclosed is a mesh heating system including: two or more electrodes configured to supply a current to the wire mesh heating element; a mesh heating element comprising filaments disposed between the two or more electrodes; and a tensioner to maintain the wire mesh heating element at tension along an axis of tension as the wire mesh heating element is heated, wherein some of the filaments of the mesh heating element are disposed to intersect the axis of tension at a non-orthogonal angle.
Abstract:
A high power appliance system to supply outlet electrical wattage is disclosed. The high power appliance system includes: a primary electrical power source to provide a primary electrical wattage; a secondary electrical power source configured to deliver a stored electrical wattage upon demand and configured to store the primary electrical wattage as the stored electrical wattage when not in demand; an outlet configured to provide the outlet electrical wattage. In the high power appliance system, the outlet electrical wattage is greater than the primary electrical wattage and includes the stored electrical wattage.
Abstract:
Disclosed is a mesh heating system including: two or more electrodes configured to supply a current to the wire mesh heating element; a mesh heating element comprising filaments disposed between the two or more electrodes; and a tensioner to maintain the wire mesh heating element at tension along an axis of tension as the wire mesh heating element is heated, wherein some of the filaments of the mesh heating element are disposed to intersect the axis of tension at a non-orthogonal angle.