Abstract:
An optical cable has a cable core including at least one tube loosely accommodating optical fibers, the at least one tube being accommodated within a jacket embedding at least two strength members, the cable core and the jacket comprising combustible material. A ratio of core combustible material/jacket combustible material is lower than 60 vol %. The jacket is made of a composition having hardness of at least 60 Shore D and a LOI higher than 35%.
Abstract:
An optical cable has a cable core including at least one tube loosely accommodating optical fibers, the at least one tube being accommodated within a jacket embedding at least two strength members, the cable core and the jacket comprising combustible material. A ratio of core combustible material/jacket combustible material is lower than 60 vol %. The jacket is made of a composition having hardness of at least 60 Shore D and a LOI higher than 35%.
Abstract:
Telecommunication cable having an elongated element housing at least one transmitting element. The elongated element has a water-soluble polymeric composition of a vinyl alcohol/vinyl acetate copolymer having a saponification degree of about 60% to about 95%; a plasticizer; a hydrolysis stabilizer compound having a chelant group having two hydrogen atoms bonded to two respective heteroatoms selected from nitrogen, oxygen and sulfur. The two hydrogen atoms have a distance between each other of 4.2×10−10 m to 5.8×10−10 m. The stabilizer compound is present in an amount of at least 0.75 mmoles per 100 g of copolymer. The elongated element is in particular a buffer tube housing a plurality of optical fibers. The presence of the stabilizer reduces the increase of the hydrolysis degree of the copolymer upon aging, thus maintaining the desired water blocking properties of the copolymer.
Abstract:
An optical fiber having at least one epoxidized polyolefin based polymer coating. The coating is formed from a crosslinkable composition having (a) at least one epoxidized polydiene oligomer having a first and a second end, the oligomer having at least one hydrocarbon chain that is substantially free of ethylenic double bonds, at least one epoxide group at the first end and at least one reactive functional group at the second end; (b) at least one hydrogenated polydiene oligomer having at least one reactive functional group capable of reacting with the epoxide groups; and (c) at least one photo-initiator. Preferably, the coating is a primary coating coated with a secondary coating.
Abstract:
Optical cable having at least one tubular element of polymeric material and at least one transmission element housed within said tubular element. The polymeric material is made from a polymeric composition having (a) at least one olefin polymer; (b) at least one inorganic filler; and (c) at least one olefin polymer including at least one functional group. The at least one olefin polymer including at least one functional group (c) is present in the polymeric composition in an amount of about 3 parts by weight to about 10 parts by weight, preferably about 5 parts by weight to about 8 parts by weight, with respect to 100 parts by weight of the olefin polymer (a).
Abstract:
A telecommunication fiber optic cable for gas pipeline application has a built-in leakage detecting device. The cable has an optical core including a number of telecommunication optical fibers, an outer jacket covering the optical core, and one or more gas leakage detector optical fibers. One or more gas leakage detector optical fibers are enclosed within the outer jacket. Preferably, the cable has a linearly extending rod reinforcing system having strength rods that force the cable to bend in a preferential bending place. Preferably, the leakage detector optical fibers are located at, or close to, a plane that is substantially orthogonal to the preferential bending plane and passing through the cable neutral axis.
Abstract:
A telecommunication fiber optic cable for gas pipeline application has a built-in leakage detecting device. The cable has an optical core including a number of telecommunication optical fibers, an outer jacket covering the optical core, and one or more gas leakage detector optical fibers. One or more gas leakage detector optical fibers are enclosed within the outer jacket. Preferably, the cable has a linearly extending rod reinforcing system having strength rods that force the cable to bend in a preferential bending place. Preferably, the leakage detector optical fibers are located at, or close to, a plane that is substantially orthogonal to the preferential bending plane and passing through the cable neutral axis.
Abstract:
Optical fiber having a glass portion; at least one protective coating of thermoplastic material having at least one thermoplastic elastomer; the thermoplastic material having the following characteristics: a modulus of elasticity value at +25° C. lower than 150 MPa, preferably at least 10 Mpa, more preferably higher than 20 Mpa, and a Vicat point higher than 85° C., preferably higher than 120° C., more preferably lower than 350° C. Preferably, the coating is a single protective coating directly positioned onto the glass portion.
Abstract:
The present invention relates to copolyethers constituted by copolymers of 7,oxa-bicyclo(2,2,1)heptane, and its alkyl-derivatives, with one or more cycloaliphatic ethers, comprising from 2 to 4 carbon atoms in their ring.These copolyethers show an anisotropic behavior in the molten state, and therefore are endowed with liquid-crystal properties.
Abstract:
A high voltage direct current cable includes at least one electrical conductor, at least one semiconducting layer, at least one stratified insulation made from windings of at least one paper-polypropylene laminate, the stratified insulation being impregnated with at least one electrically insulating fluid having a kinematic viscosity of at least 1,000 cSt at 60EC, wherein the laminate includes at least one paper layer having an air impermeability of at least 100,000 Gurley sec−1. Such a high air impermeability of the paper layer(s) remarkably reduces the swelling of the polypropylene layer(s) during impregnation with a high viscosity insulating fluid, thus preventing delamination, up to the end of the impregnation process for the whole stratified insulation.