Abstract:
Meat tenderness is determined by analyzing backscattered ultrasound signals. A signal envelope function computed from the backscattered ultrasound signals is used to derive a number of different parameters, which comprise a unimodal decay factor, a bimodal decay factor, a quiescence time, an event frequency parameter, and an event asymmetry index. Two or more of these factors are combined using a decision algorithm, which can be a neural network, a fuzzy logic classifier, a Bayesian classifier, a regression, an instance-based classifier, a decision tree, or a learned rule. These methods can also be applied to determine characteristics of the physiology of a live organism.
Abstract:
A method and apparatus for monitoring the quality of a material during die press manufacture. The material may be powder, a powder and binder mixture, a fluid or melted polymer or other material suitable for press manufacture. The method includes measuring a wave attribute of one or more ultrasonic waves transmitted through the material during or in certain instances before compaction. Information is derived from the measured wave attribute regarding a quality of the compaction of the material. The information regarding the quality of the compaction of the material may include but is not limited to, the density of the material, the uniformity of the material density, changes in the composition of the material, or the degree of consolidation of the material. The wave attribute measured may be but is not limited to, the time of flight of the ultrasonic waves traveling through one or more volumes of the material, the amplitude of the ultrasonic waves traveling through one or more volumes of material or the velocity of the ultrasonic waves traveling through one or more volumes of the material. An additional embodiment of the invention is an apparatus configured to perform the above method.
Abstract:
A method for inverting a tubular liner in a hollow conduit involves: forming a cuff from the tubular liner, the cuff having an opening through which the liner is fed; and while feeding the liner through the cuff opening, feeding a gas under pressure through a gas inlet port formed in the liner to a space between the cuff and the remainder of the liner, thereby causing inversion and inflation of the liner into and through the conduit. After a portion of the liner has been inverted in the conduit, a region of the cuff and liner upstream of the gas inlet port is sealed off, thereby causing inversion of the remainder of the liner in the conduit. Optionally, before a trailing end of the liner is fed through the opening of the cuff, the trailing end is sealed to prevent flow of gas therefrom. When the liner is intended to line the conduit, the liner resin-impregnated either outside or in the conduit and, after complete inversion of the liner in the conduit, the resin is cured and the ends of the liner are sealed to the inside surfaces of the conduit. An apparatus and system for conducting the method are also provided.
Abstract:
A method and system provides for acoustic sensing of structures, including a general shape and/or configuration of the structure and movement within the structure. Acoustic waves are used to characterize structures, including any activity within. As waves from a sound source travel into the structure, they resonate within cavities and connecting tunnels or halls. This acoustic resonance is received at an acoustic receiver. The received signal is analyzed in comparison to the generated signal, and properties of the structure are determined, including the size and shape of the structure, as well as movement of objects within the structure.
Abstract:
A method of and apparatus for continuous monitoring of the composition of a fluid mixture traveling through a conduit. The relative component concentration of the fluid mixture of a liquid/liquid or solid/liquid mixture is monitored with a non-intrusive ultrasonic apparatus. The relative component concentration of the fluid mixture is determined by measuring ultrasonic propagation parameters and temperature and comparing these measured parameters to calibrated data based on analytical measurements of samples of the process fluid mixtures. The calibrated data is obtained by measuring propagation parameters and analyzing process fluid mixtures at a different time from the measurements of process fluid mixtures.