摘要:
The expression of heterologous peptides or polypeptides in the seeds of monocot plants is optimized by generating fusion protein constructs in which monocot plant seed storage proteins are used as fusion protein carriers for the heterologous peptides or polypeptides. The heterologous peptides or polypeptides are preferably small, about 10 kDa or less and/or between 5 and 100 amino acids in length. These heterologous peptides or polypeptides may be used in human and animal nutritional and therapeutic compositions.
摘要:
The invention is directed to expression of non-plant proteins in rice plants. Expression is optimized by use of a non-rice promoter of a monocot protein gene and its corresponding signal peptide for expression of the non-plant protein in rice plant at high yields. The invention is useful for making human proteins, polypeptides and peptides in rice seeds. The expressed protein product can be isolated from the rice seed for administration to humans or other animals.
摘要:
The invention relates to transgenic plants that demonstrate enhanced expression of a plant transcription factor under the control of a seed specific promoter such that expression of the transcription factor activates transcription of a native or non-native coding sequence in the plant. The invention further relates to a method of generating such transgenic plants and methods for enhancing the level of expression of a selected heterologous protein in seeds of such transgenic plants.
摘要:
The invention relates to transgenic plants that demonstrate enhanced expression of a plant transcription factor under the control of a seed specific promoter such that expression of the transcription factor activates transcription of a native or non-native coding sequence in the plant. The invention further relates to a method of generating such transgenic plants and methods for enhancing the level of expression of a selected heterologous protein in seeds of such transgenic plants.
摘要:
The present invention provides a method of using cereal non-storage protein as fusion carrier to highly express small peptides in host endosperm cells. The method includes the steps of providing an endosperm-specific promoter and a DNA leading sequence encoding an endosperm-specific signal peptide; providing the gene of a non-storage protein as fusion carrier and an target gene; constructing a expression vector containing the promoter and DNA leading sequence, the gene of the fusion carrier, and a target gene; and expressing the expression vector in a host endosperm cell. Also provided in the invention are a vector constructed there from and the use thereof.
摘要:
A method for extracting recombinant human serum albumin (rHSA) from transgenic rice grain is provided, comprising the steps of: 1) grinding dehusked rice containing rHSA into milled rice grain with a fineness of 80˜120 mesh, which is mixed with a extraction buffer in a w/v ratio of 1:5, then extracting at 55˜60° C. for 1˜3 hours to obtain mixture I; said extraction buffer comprises 10˜30 mM phosphate buffer, 10˜20 mM sodium acetate, 15˜30 mM ammonium sulfate and 5˜20 mM sodium caprylate and has a pH of 6.5˜8; 2) adjusting the pH of mixture I to 4.0˜4.5, followed by precipitating at room temperature for 3˜12 hours to obtain mixture II; 3) filtering the mixture II and collecting the filtrate, to obtain a solution containing high concentration of rHSA. The concentration of rHSA in the resultant solution is 650˜660 μg/mL, which increases by 1.15 times comparing to the extraction amount before improvement, and the amount of non-target protein is reduced by 2.46 times. The method provides a basis for subsequent purification of rHSA.
摘要:
A method for extracting recombinant human serum albumin (rHSA) from transgenic rice grain is provided, comprising the steps of: 1) grinding dehusked rice containing rHSA into milled rice grain with a fineness of 80˜120 mesh, which is mixed with a extraction buffer in a w/v ratio of 1:5, then extracting at 55˜60° C. for 1˜3 hours to obtain mixture I; said extraction buffer comprises 10˜30 mM phosphate buffer, 10˜20 mM sodium acetate, 15˜30 mM ammonium sulfate and 5˜20 mM sodium caprylate and has a pH of 6.5˜8; 2) adjusting the pH of mixture I to 4.0˜4.5, followed by precipitating at room temperature for 3˜12 hours to obtain mixture II; 3) filtering the mixture II and collecting the filtrate, to obtain a solution containing high concentration of rHSA. The concentration of rHSA in the resultant solution is 650˜660 μg/mL, which increases by 1.15 times comparing to the extraction amount before improvement, and the amount of non-target protein is reduced by 2.46 times. The method provides a basis for subsequent purification of rHSA.
摘要:
The present invention provides a method of using cereal non-storage protein as fusion carrier to highly express small peptides in host endosperm cells. The method includes the steps of providing an endosperm-specific promoter and a DNA leading sequence encoding an endosperm-specific signal peptide; providing the gene of a non-storage protein as fusion carrier and an target gene; constructing a expression vector containing the promoter and DNA leading sequence, the gene of the fusion carrier, and a target gene; and expressing the expression vector in a host endosperm cell. Also provided in the invention are a vector constructed there from and the use thereof.
摘要:
A method for separating and purifying recombinant human serum albumin (rHSA) from transgenic rice grain, sequentially comprising the steps of: 1) subjecting crude extract of rHSA to cation exchange chromatography to obtain primary product I; 2) subjecting the primary product I to anion exchange chromatography to obtain secondary product II; 3) subjecting the secondary product II to hydrophobic chromatography to obtain purified rHSA. The method may further comprise a step of ceramic hydroxyapatite chromatography prior to the hydrophobic chromatography. The method has the advantages of low cost and easy operation. The resultant rHSA has a purity of about 99% by HPLC.
摘要:
A method for separating and purifying recombinant human serum albumin (rHSA) from transgenic rice grain, sequentially comprising the steps of: 1) subjecting crude extract of rHSA to cation exchange chromatography to obtain primary product I; 2) subjecting the primary product I to anion exchange chromatography to obtain secondary product II; 3) subjecting the secondary product II to hydrophobic chromatography to obtain purified rHSA. The method may further comprise a step of ceramic hydroxyapatite chromatography prior to the hydrophobic chromatography. The method has the advantages of low cost and easy operation. The resultant rHSA has a purity of about 99% by HPLC.