Abstract:
A forming shield arrangement configured for a windrowing work vehicle is supported for movement by a support structure. The forming shield arrangement is configured to at least partly shape a windrow of a crop material. A method of operating the forming shield arrangement includes receiving, by a processor of a control system from a memory element, a stored position setting that corresponds to a position of the forming shield arrangement relative to the support structure. The method also includes processing, by the processor, a positioning control signal based, at least in part, on the stored position setting. Moreover, the method includes changing, with an actuator, the position of the forming shield arrangement according to the positioning control signal.
Abstract:
A method of adjusting a hydraulic drive system includes determining a forward park position value, a reverse park position value, an initial forward position value, and an initial reverse position value of a control device and using these values to calculate a forward buffer value and a reverse buffer value. The forward buffer value and the reverse buffer value are used to determine an adjustment amount for the drive system. The adjustment amount can be used to properly adjust a drive system to avoid system errors.
Abstract:
A cruise control system and method for a work vehicle with vehicle interlocks, and a controller. Each vehicle interlock monitors a vehicle system status. When at least one of the vehicle interlocks is triggered, the controller notifies the operator of the triggered interlock and deactivates cruise control. An activation mechanism can activate cruise control. When the activation mechanism is activated and none of the vehicle interlocks is triggered, the controller activates cruise control and maintains current vehicle ground speed at a vehicle cruise speed. When the activation mechanism is deactivated, the controller deactivates cruise control. The cruise speed can be set to the current vehicle ground speed, or can be set by a speed selection mechanism, or can resume at a previously selected cruise speed, or can be set by another method.
Abstract:
A harvesting work vehicle includes a conditioning arrangement configured to condition a crop material. A method of operating the work vehicle includes receiving, by a processor of a control system from a memory element, a stored conditioning setting for a variable parameter of the conditioning arrangement. The method also includes processing, by the processor, a conditioning control signal based, at least in part, on the stored conditioning setting. Furthermore, the method includes changing, with an actuator, the variable parameter of the conditioning arrangement according to the conditioning control signal.
Abstract:
A harvesting work vehicle includes a conditioning arrangement configured to condition a crop material. A method of operating the work vehicle includes receiving, by a processor of a control system from a memory element, a stored conditioning setting for a variable parameter of the conditioning arrangement. The method also includes processing, by the processor, a conditioning control signal based, at least in part, on the stored conditioning setting. Furthermore, the method includes changing, with an actuator, the variable parameter of the conditioning arrangement according to the conditioning control signal.
Abstract:
A four-bar linkage is provided as a mechanical interface for transferring respective outputs from a speed/direction control device and a hydraulic steering cylinder to displacement control arms of a pair of pumps of a dual-path hydrostatic transmission including a pair of motors respectively coupled for driving a pair of front wheels of a vehicle. The hydraulic steering cylinder is fixed and has a piston rod slidably coupled to an input arm of the four-bar linkage in such a way that a rotation speed decrease occurs as the arm and a linked control plate are pivoted from a neutral position, the control plate transferring pivotal movement to effect differential movement of the displacement control arms. This results in the vehicle speed decreasing during a turn.
Abstract:
A power management system and method for a work machine that receives real time data, computes current power requirements based on the real time data, computes an optimized engine speed based on the current power requirements and a desired reserve power, and informs an operator of the optimized engine speed. The system can predict upcoming power requirements based on real time and predictive machine data, and compute the optimized engine speed based on the current and upcoming power requirements and the desired reserve power. The system can also receive predictive data, and predict the upcoming power requirements based on the predictive and real time data. Predictive data can include topographical data and/or historical power-consumption data. The system can include an automatic mode where the system automatically adjusts engine speed to the optimized engine speed. The system can maintain a constant machine ground speed as it automatically adjusts engine speed.
Abstract:
Systems and methods for controlling formation of a windrow in response to a single control input are disclosed. The single control input represents a desired windrow width. The single control input is used to determine positions of components of a cutter implement, such as side shields and a swath flap, that are used to form a windrow having the desired windrow width represented or that is otherwise associated with the single control input.
Abstract:
A crop windrow monitoring system includes an image sensor positioned to include a field of view facing a rearward direction of a power unit, and a visual monitor operable to display an image. A computing device is operable to determine an intended direction of movement of the power unit. The image is displayed on the visual monitor in a first mode having a first magnification when the intended direction of movement includes the rearward direction. The image is displayed on the visual monitor in a second mode having a second magnification and overlaid with indicia indicating a width of the windrow when the intended direction of movement includes the forward direction. The second magnification may be larger than the first magnification.
Abstract:
A method of adjusting a hydraulic drive system includes determining a forward park position value, a reverse park position value, an initial forward position value, and an initial reverse position value of a control device and using these values to calculate a forward buffer value and a reverse buffer value. The forward buffer value and the reverse buffer value are used to determine an adjustment amount for the drive system. The adjustment amount can be used to properly adjust a drive system to avoid system errors.