Abstract:
An intake air circuit is structured to transmit intake air from a turbocharger compressor to an intake manifold of an engine. A charge air cooler (“CAC”), a bypass line, and a bypass heater are each positioned along the intake air circuit in parallel with each other. A first control valve is structured to controllably divert the intake air around the CAC. A second control valve is structured to controllably divert the intake air around at least one of the bypass line and the bypass heater. A controller operatively coupled to each of the engine, and the first and second control valves is structured to control each of the first and second control valves to cause the intake air to flow along a determined desired flow path based on each of measured ambient temperature and measured engine load.
Abstract:
One embodiment is a system comprising an internal combustion engine having one or more non-dedicated cylinders and one or more dedicated EGR cylinders configured to provide EGR to the engine via an EGR loop, a first spark plug coupled to each of the one or more non-dedicated cylinders, and a second spark plug coupled to each of the one or more dedicated EGR cylinders, wherein the second spark plug has a physical or dimensional characteristic that is different from the first spark plug. In certain forms each of the non-dedicated cylinders has only one of a first type of spark plug and each of the dedicated EGR cylinders has only one of a second type of spark plug. One or more of the characteristics that may vary between the first and second types of spark plugs include spark gap, electrode diameter, heat range, and ion sensing capability.
Abstract:
An intake air circuit is structured to transmit intake air from a turbocharger compressor to an intake manifold of an engine. A charge air cooler (“CAC”), a bypass line, and a bypass heater are each positioned along the intake air circuit in parallel with each other. A first control valve is structured to controllably divert the intake air around the CAC. A second control valve is structured to controllably divert the intake air around at least one of the bypass line and the bypass heater. A controller operatively coupled to each of the engine, and the first and second control valves is structured to control each of the first and second control valves to cause the intake air to flow along a determined desired flow path based on each of measured ambient temperature and measured engine load.
Abstract:
Systems, apparatus, and methods are disclosed that include a divided exhaust engine with at least one primary EGR cylinder and a plurality of non-primary EGR cylinders. The systems, apparatus and methods control the amount of recirculated exhaust gas in a charge flow in response to EGR fraction deviation conditions.
Abstract:
An internal combustion engine system includes an engine with a plurality of pistons housed in respective ones of a plurality of cylinders, an air intake system to provide air to the plurality of cylinders through respective ones of a plurality of intake valves, an exhaust system to release exhaust gas from the plurality of cylinders through respective one of a plurality of exhaust valves. The internal combustion engine uses vacuum braking and/or compression release braking in response to one or more braking conditions.
Abstract:
Systems, apparatus, and methods are disclosed that include a divided exhaust engine with at least one primary EGR cylinder and a plurality of non-primary EGR cylinders. The systems, apparatus and methods control the amount of recirculated exhaust gas in a charge flow in response to EGR fraction deviation conditions.
Abstract:
A system includes an internal combustion engine having a number of cylinders, with at least one of the cylinder(s) being a primary EGR cylinder that is dedicated to provided EGR flow during at least some operating conditions. A controller is structured to control combustion conditions in the cylinders in response to one or more operating conditions associated with the engine.
Abstract:
Systems and methods are disclosed for adjusting the spark timing of an internal combustion engine. According to at least one aspect of the present disclosure, the system includes an exhaust gas recirculation (EGR) system for recirculating exhaust gas flow from at least one primary EGR cylinder of an engine into an intake system prior to combustion. According to at least one other aspect of the present disclosure, the method includes estimating a dynamic EGR fraction of exhaust gas directed into the intake system via the EGR system, estimating a steady-state EGR fraction of exhaust gas directed into the intake system at the changed mass air flow rate, computing a difference between the dynamic fraction and steady-state fraction to determine a change in EGR fraction, and applying a gain factor to the change in EGR fraction to determine a desired spark timing adjustment.
Abstract:
An internal combustion engine includes a number of cylinders and a controller operably connected to interpret operating parameters related to the operation of the number of cylinders. A cylinder torque adjustment for each cylinder is determined from the operating parameters to provide a torque balancing response that reduces noise, vibration and/or harshness in engine operation.
Abstract:
Systems and methods are disclosed for adjusting the spark timing of an internal combustion engine. According to at least one aspect of the present disclosure, the system includes an exhaust gas recirculation (EGR) system for recirculating exhaust gas flow from at least one primary EGR cylinder of an engine into an intake system prior to combustion. According to at least one other aspect of the present disclosure, the method includes estimating a dynamic EGR fraction of exhaust gas directed into the intake system via the EGR system, estimating a steady-state EGR fraction of exhaust gas directed into the intake system at the changed mass air flow rate, computing a difference between the dynamic fraction and steady-state fraction to determine a change in EGR fraction, and applying a gain factor to the change in EGR fraction to determine a desired spark timing adjustment.