Abstract:
A flow control device includes a stack of annular discs positioned in a flow path. Each disc includes fluid passageways extending between inner and outer perimeters of the disc, with each passageway defining a flow axis extending out of the disc and radially offset from a central axis of the discs. A plug is moveable relative to the discs between closed and open positions. In the closed position, a cylindrical section of the plug is positioned to block fluid flow through the annular discs. In the open position, the annular discs and a tapered section of the plug collectively define an annular vortex chamber. The fluid passageways in the annular discs and the tapered section of the plug collectively impart a rotational flow when the plug is in the open position and as fluid exits the annular discs.
Abstract:
A spray nozzle assembly for a steam desuperheating or attemperator device. In one embodiment, the spray nozzle sub-assembly of the spray nozzle assembly comprises a fixed nozzle element which is integrated into a spring-loaded nozzle element, and is specifically adapted to improve water droplet fractionation at higher flow rates while further providing an effectively higher spray area through the formation of two water cones (rather than a single water cone), such water cones being sprayed into a flow of superheated steam in order to reduce the temperature of the steam. In another embodiment, the spray nozzle sub-assembly of the spray nozzle assembly comprises a nested pair of spring-loaded primary and secondary nozzle elements which are also adapted to provide an effectively higher spray area through the formation of two water cones.
Abstract:
A flow control device includes a cylindrical body disposed about a primary axis. The cylindrical body includes a primary flow passage extending therethrough. A ball element having an inlet flow passage extending therethrough is pivotable relative to the cylindrical body between an open position and a closed position. In the open position, the inlet flow passage is in fluid communication with the primary flow passage, and in the closed position, the inlet flow passage is not in fluid communication with the primary flow passage. The flow control device further comprises an internal flow control body having a collar positioned within the cylindrical body about the primary axis. A plurality of outer helical fins extend outwardly from the collar and define a plurality of outer helical passageways, and a plurality of inner helical fins are positioned inwardly from the collar and define a plurality of inner helical passageways.
Abstract:
An anti-surge system capable of anticipating a surge event in a compressor for readying the actuator to quickly actuate the anti-surge valve from the closed position to the open position. The control system includes a compressor surge controller configured to transmit a signal to the valve positioner when the operating point of the valve is approaching the surge control line. The compressor surge controller may monitor an operating margin equal to the difference between the operating point and the surge control line, and when the operating margin falls below a prescribed threshold, the compressor surge controller may send a signal to the positioner. In turn, the positioner may vent some pressure from the actuator. In this way, the dead time of the anti-surge valve on the valve seat is minimized and the valve will react more promptly to an opening signal.
Abstract:
A flow control device includes a stack of annular discs positioned in a flow path. Each disc includes fluid passageways extending between inner and outer perimeters of the disc, with each passageway defining a flow axis extending out of the disc and radially offset from a central axis of the discs. A plug is moveable relative to the discs between closed and open positions. In the closed position, a cylindrical section of the plug is positioned to block fluid flow through the annular discs. In the open position, the annular discs and a tapered section of the plug collectively define an annular vortex chamber. The fluid passageways in the annular discs and the tapered section of the plug collectively impart a rotational flow when the plug is in the open position and as fluid exits the annular discs.
Abstract:
In accordance with the present invention, there is provided a fluid or liquid barrier packing system which is adapted to minimize VOC emissions, while also providing live-loading and continuous load monitoring functions. The components of the packing system (including the liquid barrier) are adapted to be installed in a traditional stuffing box of a valve utilizing a top entry method, and without the necessity of having to inject the liquid through any side ports of the valve. The packing system reduces leakage levels as required by low emission leakage specifications by creating a reverse osmosis effect, limiting the diffusivity of a gas through the packing elements of the system. Thus, the packing system of the present invention provides a simplified method to load and monitor a barrier in the stuffing box of the valve to slightly higher pressure than processed fluid pressure.
Abstract:
An anti-surge system capable of anticipating a surge event in a compressor for readying the actuator to quickly actuate the anti-surge valve from the closed position to the open position. The control system includes a compressor surge controller configured to transmit a signal to the valve positioner when the operating point of the valve is approaching the surge control line. The compressor surge controller may monitor an operating margin equal to the difference between the operating point and the surge control line, and when the operating margin falls below a prescribed threshold, the compressor surge controller may send a signal to the positioner. In turn, the positioner may vent some pressure from the actuator. In this way, the dead time of the anti-surge valve on the valve seat is minimized and the valve will react more promptly to an opening signal.
Abstract:
A flow control device includes a cylindrical body disposed about a primary axis. The cylindrical body includes a primary flow passage extending therethrough. A ball element having an inlet flow passage extending therethrough is pivotable relative to the cylindrical body between an open position and a closed position. In the open position, the inlet flow passage is in fluid communication with the primary flow passage, and in the closed position, the inlet flow passage is not in fluid communication with the primary flow passage. The flow control device further comprises an internal flow control body having a collar positioned within the cylindrical body about the primary axis. A plurality of outer helical fins extend outwardly from the collar and define a plurality of outer helical passageways, and a plurality of inner helical fins are positioned inwardly from the collar and define a plurality of inner helical passageways.
Abstract:
A spray nozzle assembly for a steam desuperheating or attemperator device. In one embodiment, the spray nozzle sub-assembly of the spray nozzle assembly comprises a fixed nozzle element which is integrated into a spring-loaded nozzle element, and is specifically adapted to improve water droplet fractionation at higher flow rates while further providing an effectively higher spray area through the formation of two water cones (rather than a single water cone), such water cones being sprayed into a flow of superheated steam in order to reduce the temperature of the steam. In another embodiment, the spray nozzle sub-assembly of the spray nozzle assembly comprises a nested pair of spring-loaded primary and secondary nozzle elements which are also adapted to provide an effectively higher spray area through the formation of two water cones.
Abstract:
In accordance with the present invention, there is provided a fluid or liquid barrier packing system which is adapted to minimize VOC emissions, while also providing live-loading and continuous load monitoring functions. The components of the packing system (including the liquid barrier) are adapted to be installed in a traditional stuffing box of a valve utilizing a top entry method, and without the necessity of having to inject the liquid through any side ports of the valve. The packing system reduces leakage levels as required by low emission leakage specifications by creating a reverse osmosis effect, limiting the diffusivity of a gas through the packing elements of the system. Thus, the packing system of the present invention provides a simplified method to load and monitor a barrier in the stuffing box of the valve to slightly higher pressure than processed fluid pressure.