摘要:
The present invention relates to the use of a cationic copolymer as a rheology modifier in a geopolymer foam formulation, a geopolymer foam formulation comprising a cationic copolymer, a process for preparing a geopolymer foam, a geopolymer foam comprising a cationic copolymer and composition for preparing a geopolymer foam formulation.
摘要:
Proposed is a polycondensation product comprising as monomer components at least one aryl polyoxyalkylene ether, at least one vicinally disubstituted aromatic compound, at least one aldehyde and also optionally further aromatic compounds; processes for preparing same, and also use thereof as dispersant for aqueous suspensions of inorganic binders and as grinding assistant for inorganic binders.
摘要:
A shotcrete composition comprising a) a cementitious binder; b) an ettringite formation controller comprising (i) a glyoxylic acid condensate and/or a glyoxylic acid adduct; and c) an alkali-free, aluminum-based shotcrete accelerator. The invention further relates to a process comprising providing a cementitious composition comprising a) a cementitious binder, and b) an ettringite formation controller comprising (i) a glyoxylic acid condensate and/or a glyoxylic acid adduct; admixing an alkali-free, aluminum-based shotcrete accelerator to the cementitious composition to obtain a shotcrete composition; and applying the shotcrete composition onto a surface to obtain a shotcrete structure and allowing the shotcrete structure to harden. The invention also relates to a hardened shotcrete structure obtained by this process.
摘要:
The present invention relates to copolymers that comprise salicylic acid derivative structural units and structural units having free polyether side chains. The copolymers are suitable to plasticize inorganic binder systems, construction chemical compositions comprising said copolymers and the use of said copolymers as a plasticizer for inorganic binder systems. Binder systems with a reduced amount of Portland cement comprising at least one copolymer of the invention provide a better liquefaction and processability as compared to said binder systems without a copolymer of the invention.
摘要:
A construction composition comprises a) a cementitious binder comprising one or more calcium silicate mineral phases and one or more calcium aluminate mineral phases; b) optionally, an extraneous aluminate source; c) a sulfate source; d) an ettringite formation controller comprising (i) glyoxylic acid, a glyoxylic acid salt and/or a glyoxylic acid derivative; and (ii) at least one of a borate source and a carbonate source, wherein the carbonate source is selected from inorganic carbonates having an aqueous solubility of 0.1 g·L−1 or more, organic carbonates, and mixtures thereof; and e) a polyol in an amount of 0.2 to 2.5 wt.-%, relative to the amount of cementitious binder a). The composition contains 0.05 to 0.2 mol of total available aluminate, calculated as Al(OH)4−, from the calcium aluminate mineral phases plus the optional extraneous aluminate source, per 100 g of cementitious binder a); and the molar ratio of total available aluminate to sulfate is 0.4 to 2.0. The construction composition exhibits high early strength and sufficient open time. The advantageous effects are readily achievable for a variety of cements with varying elemental compositions.
摘要:
The present invention suggests novel inorganic binder formulations and the use of these formulations for the production of acid and heat-resistant construction products.
摘要:
The present invention relates to cationic copolymers, a process for the production of these cationic copolymers and the use of these cationic copolymers as dispersants for geopolymer binder systems. These cationic copolymers where the cationic charge is due to the presence of certain cyclic and/or polycationic groups are stable towards Hoffmann elimination that would otherwise occur at very high pH values. Moreover, the dispersing effect of cationic polymers can be further enhanced through the addition of polyvalent anions.