Abstract:
Described is a system and method for authenticating a power source. The system comprises a battery including a first encryption engine storing a first key, and a battery charger including a microcontroller and a second encryption engine storing a second key. When the microcontroller detects a coupling of the battery to the charger, the microcontroller issues a challenge to the first encryption engine and the second encryption engine. The first encryption engine generates a first response as a function of the challenge, the first key and a predefined algorithm, and the second encryption engine generates a second response as a function of the challenge, the second key and the predefined algorithm. The microcontroller compares the first and second responses to authenticate the battery.
Abstract:
Described is a system and method for determining determining a present state of charge of a battery and determining a rate of change of the state of charge of the battery, the rate of change being determined based on a charge current being supplied to the battery. Then, an updated state of charge is determined based on the rate of change.
Abstract:
Described is a system and method for charging a battery. The system includes a processor powered by a battery; and a controller determining a remaining battery charge of the battery. The controller sets a first charge current to recharge the battery when the remaining battery charge is insufficient to operate the processor. The controller wakes the processor when the battery has been recharged so that the remaining battery capacity is sufficient to operate the processor. The processor negotiates for a second charge current to recharge the battery. The controller sets the second charge current when the processor successfully negotiated.
Abstract:
Described is a system and method for charging a battery. The system includes a processor powered by a battery; and a controller determining a remaining battery charge of the battery. The controller sets a first charge current to recharge the battery when the remaining battery charge is insufficient to operate the processor. The controller wakes the processor when the battery has been recharged so that the remaining battery capacity is sufficient to operate the processor. The processor negotiates for a second charge current to recharge the battery. The controller sets the second charge current when the processor successfully negotiated.
Abstract:
Described is a system and method for charging a battery. The system includes a processor powered by a battery; and a controller determining a remaining battery charge of the battery. The controller sets a first charge current to recharge the battery when the remaining battery charge is insufficient to operate the processor. The controller wakes the processor when the battery has been recharged so that the remaining battery capacity is sufficient to operate the processor. The processor negotiates for a second charge current to recharge the battery. The controller sets the second charge current when the processor successfully negotiated.
Abstract:
Described is a system and method for determining determining a present state of charge of a battery and determining a rate of change of the state of charge of the battery, the rate of change being determined based on a charge current being supplied to the battery. Then, an updated state of charge is determined based on the rate of change.
Abstract:
A battery charging device includes (i) a first circuit receiving a pulse width modulated signal, (ii) a second circuit receiving the pulse width modulated signal, and (iii) a third circuit receiving the pulse width modulated signal. The first circuit generates a first input to set a maximum battery charge current produced by the battery charging device. The second circuit generates a second input to disable the battery charging device based on the pulse width modulated signal. The third circuit generates a third input to select a charging mode of the battery charging device.
Abstract:
Described is a system and method for authenticating a power source. The system comprises a battery including a first encryption engine storing a first key, and a battery charger including a microcontroller and a second encryption engine storing a second key. When the microcontroller detects a coupling of the battery to the charger, the microcontroller issues a challenge to the first encryption engine and the second encryption engine. The first encryption engine generates a first response as a function of the challenge, the first key and a predefined algorithm, and the second encryption engine generates a second response as a function of the challenge, the second key and the predefined algorithm. The microcontroller compares the first and second responses to authenticate the battery.
Abstract:
A method of fault detection for battery chargers includes sensing a charge current applied to a battery with a resistive element. The method includes measuring a voltage across the resistive element. The method includes generating a trigger signal when the measured voltage across the resistive element exceeds a predetermined value. The method includes generating from the trigger signal an interrupt signal for a microprocessor. The method includes initiating an over-current handling routine in the microprocessor.
Abstract:
Signals received by an electronic article surveillance system are processed digitally to ascertain the variation in magnitude of successive signals and to prevent the actuation of an alarm when the variation exceeds a predetermined amount; and signals whose frequency components have been phase shifted from a filtering operation are restored by passing them into a signal delay circuit, tapping the delay circuit at several points therealong into associated signal channels selectively amplifying or attenuating the signal in each channel and combining the signals in each channel.