Abstract:
A scanning endoscope, amenable to both rigid and flexible forms, scans a beam of light across a field-of-view, collects light scattered from the scanned beam, detects the scattered light, and produces an image. The endoscope may comprise one or more bodies housing a controller, light sources, and detectors; and a separable tip housing the scanning mechanism. The light sources may include laser emitters that combine their outputs into a polychromatic beam. Light may be emitted in ultraviolet or infrared wavelengths to produce a hyperspectral image. The detectors may be housed distally or at a proximal location with gathered light being transmitted thereto via optical fibers. A plurality of scanning elements may be combined to produce a stereoscopic image or other imaging modalities. The endoscope may include a lubricant delivery system to ease passage through body cavities and reduce trauma to the patient. The imaging components are especially compact, being comprised in some embodiments of a MEMS scanner and optical fibers, lending themselves to interstitial placement between other tip features such as working channels, irrigation ports, etc.
Abstract:
A method includes obtaining a measurement of a property of a light source, scanning light from the light source onto a surface, such that the light interacts with the surface, detecting light from the surface to create a picture element, and correcting the picture element with the measurement of the property. An apparatus includes a scanned beam display, the scanned beam display is configured to receive a signal and to scan the signal for viewing by a user. The signal is to contain picture element information. The picture element information includes information for a plurality of colors, wherein information for at least one color is corrected to substantially remove a perturbation to the picture element information, such that an image containing the picture element information will be substantially unchanged by the perturbation.
Abstract:
A scanner such as a bar-code scanner includes a scan-beam generator, a beam reflector having a first magnet, and a beam-sweep mechanism having a second magnet. The beam-sweep mechanism causes the reflector to sweep the scan beam across a target such as a bar-code symbol by exerting a force on the first magnet with the second magnet. In one example, attraction between the magnets holds the reflector steady in a non-sweep position. Conversely, in a sweep position, repulsion between the magnets causes the reflector to oscillate and sweep the scan beam across a target such as a bar-code symbol. Because it does not include a motor for rotating a beam-sweep mirror, the scanner is often smaller and uses less electrical energy than motorized bar-code scanners.
Abstract:
A variable illuminator, for instance a device for scanning a beam of light, emits a selected amount of power to a plurality of spots across a field of view. The amount of power is determined as inversely proportional to the apparent brightness of each spot. In the case where the spot size is equal to pixel size, the device may operate with a non-imaging detector. In the case where pixel size substantially equals spot size, the output of the variable illuminator may be converged to produce a substantially uniform detector response and the image information is determined as the inverse of a frame buffer used to drive the variable illuminator. The illuminator and detector may be driven synchronously. In the case where an imaging detector is used, the variable illumination may be used to compress the dynamic range of the field of view to substantially within the dynamic range of the imaging detector.
Abstract:
A MEMS scanning device includes more than one type of actuation. In one approach capacitive and magnetic drives combine to move a portion of the device along a common path. In one such structure, the capacitive drive comes from interleaved combs. In another approach, a comb drive combines with a pair of planar electrodes to produce rotation of a central body relative to a substrate. In an optical scanning application, the central body is a mirror. In a biaxial structure, a gimbal ring carries the central body. The gimbal ring may be driven by more than one type of actuation to produce motion about an axis orthogonal to that of the central body. In another aspect, a MEMS scanning device is constructed with a reduced footprint.
Abstract:
Gaseous particles or gas-entrained particles may be conveyed by electric fields acting on charged species included in the gaseous or gas-entrained particles.
Abstract:
A heat exchange system includes an electrode configured to electrostatically control a flow of a heated gas stream in the vicinity of a heat transfer surface and/or a heat-sensitive surface.
Abstract:
An integrated circuit is configured for optical communication via an optical polymer stack located on top of the integrated circuit. The optical polymer stack may include one or more electro-optic polymer devices including an electro-optic polymer. The electro-optic polymer may include a host polymer and a second order nonlinear chromomophore, the host polymer and the chromophore both including aryl groups configured to interact with one another to provide enhanced thermal and/or temporal stability.
Abstract:
Techniques are generally described for detecting a concentration level of at least one gas. Some example devices may include a sensor including conductive plate on a surface of dielectric including a nanotube layer formed thereon. The conductive plate and the nanotube layer form a resonator that resonates at a frequency in response to an interrogation signal. The nanotube layer may be configured to associate with one or more gas molecules. The frequency at which the resonator resonates may shift according to which gas molecules are associated with the nanotube layer to identify a particular gas. An amount of resonance may be exhibited as a resonant response signal. An amplitude of the resonant response signal may be indicative of the concentration level of the detected gas.
Abstract:
Energy storage devices for storing energy are provided. An energy storage device includes a flywheel disposed in a chamber of a journal. A gas bearing is formed between an outer face of the flywheel and an inner face of the journal. The gas bearing exerts a compressive force on the flywheel, which allows for higher rotational velocities and higher energy storage.