摘要:
The bit-line sense amplifier includes a driving-voltage control circuit and an amplifier. The driving-voltage control circuit generates a first test driving voltage having a voltage level of a pre-charge voltage, a second test driving voltage having a voltage level of a pre-charge voltage added by a voltage difference between a bit-line and a complementary bit-line, and a third test driving voltage having a voltage level of a pre-charge voltage subtracted by the voltage difference in a test mode. The amplifier senses and amplifies a voltage difference between the bit-line and the complementary bit-line.
摘要:
Provided is a semiconductor memory device including a sub-word-line driving circuit capable of reducing an amount of leakage current due to coupling. The semiconductor memory device includes a word-line enable signal generating circuit and a sub-word-line driving circuit. The sub-word-line driving circuit provides a pull-down current path between a selected word line and ground for a pulse type period of time in a precharge mode following an active mode for the selected word line, generates a word line driving signal on the basis of a main word line driving signal, a first sub-word-line control signal, and a second sub-word-line control signal, and provides the word line driving signal to a memory cell array. The semiconductor memory device may reduce an amount of leakage current flowing to a ground through the sub-word-line driving circuit.
摘要:
Provided is a semiconductor memory device including a sub-word-line driving circuit capable of reducing an amount of leakage current due to coupling. The semiconductor memory device includes a word-line enable signal generating circuit and a sub-word-line driving circuit. The sub-word-line driving circuit provides a pull-down current path between a selected word line and ground for a pulse type period of time in a precharge mode following an active mode for the selected word line, generates a word line driving signal on the basis of a main word line driving signal, a first sub-word-line control signal, and a second sub-word-line control signal, and provides the word line driving signal to a memory cell array. The semiconductor memory device may reduce an amount of leakage current flowing to a ground through the sub-word-line driving circuit.
摘要:
The bit-line sense amplifier includes a driving-voltage control circuit and an amplifier. The driving-voltage control circuit generates a first test driving voltage having a voltage level of a pre-charge voltage, a second test driving voltage having a voltage level of a pre-charge voltage added by a voltage difference between a bit-line and a complementary bit-line, and a third test driving voltage having a voltage level of a pre-charge voltage subtracted by the voltage difference in a test mode. The amplifier senses and amplifies a voltage difference between the bit-line and the complementary bit-line.
摘要:
An internal voltage generating circuit of a semiconductor memory device includes a driving current generator that controls the magnitude of a driving current and supplies a controlled driving current in response to signals activated according to an operational mode. A comparison voltage generator receives a reference voltage and an internal power supply voltage, outputs a differentially amplified comparison voltage in response to a voltage difference between the reference voltage and the internal power supply voltage, and operates according to the driving current. A bulk bias controller receives at least two voltages and selectively outputs a voltage as a bulk bias voltage in response to a power-down enable signal, a normal enable signal, and an operating enable signal. An internal voltage driver controls a threshold voltage in response to the bulk bias voltage, controls a current amount in response to the comparison voltage, and outputs the internal power supply voltage.
摘要:
An internal voltage generating circuit of a semiconductor memory device includes a driving current generator that controls the magnitude of a driving current and supplies a controlled driving current in response to signals activated according to an operational mode. A comparison voltage generator receives a reference voltage and an internal power supply voltage, outputs a differentially amplified comparison voltage in response to a voltage difference between the reference voltage and the internal power supply voltage, and operates according to the driving current. A bulk bias controller receives at least two voltages and selectively outputs a voltage as a bulk bias voltage in response to a power-down enable signal, a normal enable signal, and an operating enable signal. An internal voltage driver controls a threshold voltage in response to the bulk bias voltage, controls a current amount in response to the comparison voltage, and outputs the internal power supply voltage.
摘要:
An internal voltage generator is disclosed. The internal voltage generator may include a comparator for controlling a voltage of a first node in response to a voltage difference between a reference voltage and an internal voltage, an internal voltage driving portion connected between a driving node and an internal voltage node to apply the internal voltage to the internal voltage node in response to a voltage level of the first node, and/or a leakage current interrupting portion to apply an external voltage to the first node to deactivate the internal voltage driving portion and to interrupt the external voltage applied to the driving node to interrupt a leakage current.
摘要:
An internal voltage generator is disclosed. The internal voltage generator may include a comparator for controlling a voltage of a first node in response to a voltage difference between a reference voltage and an internal voltage, an internal voltage driving portion connected between a driving node and an internal voltage node to apply the internal voltage to the internal voltage node in response to a voltage level of the first node, and/or a leakage current interrupting portion to apply an external voltage to the first node to deactivate the internal voltage driving portion and to interrupt the external voltage applied to the driving node to interrupt a leakage current.