摘要:
An embodiment of the invention includes a pillar type capacitor where a pillar is formed over an upper portion of a storage node contact. A bottom electrode is formed over sidewalls of the pillar, and a dielectric film is formed over pillar and the bottom electrode. A top electrode is then formed over the upper portion of the dielectric film.
摘要:
A semiconductor device having a high aspect cylindrical capacitor and a method for fabricating the same is presented. The high aspect cylindrical type capacitor is a stable structure which is not prone to causing bunker defects and losses in a guard ring. The semiconductor device includes the cylindrical type capacitor structure, a storage node oxide, a guard ring hole, a conductive layer, and a capping oxide. The cylindrical type capacitor structure in a cell region includes a cylindrical type lower electrode, a dielectric and an upper electrode. The storage node oxide is in a peripheral region over the semiconductor substrate. The conductive layer coating the guard ring hole. The guard ring hole at a boundary of the peripheral region that adjoins the cell region over the semiconductor substrate. The capping oxide partially fills in a part of the conductive layer. The gapfill film filling in the rest of the conductive layer.
摘要:
Forming a capacitor of a semiconductor device includes forming an interlayer dielectric having holes over a semiconductor substrate. A conductive layer is then formed on surfaces of the holes and on the upper surface of the interlayer dielectric. A silicon-containing conductive layer is formed by flowing a silicon source gas for the semiconductor substrate formed with the conductive layer, so that silicon atoms can penetrate into the conductive layer. The silicon-containing conductive layer prevents etchant from infiltrating the interlayer dielectric below the silicon-containing conductive layer.
摘要:
A capacitor is made by forming a buffer oxide layer, an etching stop layer, and a mold insulation layer over a semiconductor substrate having a storage node contact plug. The mold insulation layer and the etching stop layer are etched to form a hole in an upper portion of the storage node contact plug. A tapering layer is deposited over the mold insulation layer including the hole. The tapering layer and the buffer oxide layer are etched back so that the tapering layer is remained only at the upper end portion of the etched hole. A metal storage node layer formed on the etched hole over the remaining tapering layer. The mold insulation layer and the remaining tapering layer are removed to form a cylindrical storage node having a tapered upper end. A dielectric layer and a plate node are formed over the storage node.
摘要:
A semiconductor device with a stable structure having high capacitance by changing the pillar type storage node structure and a method of manufacturing the same are provided. The method includes forming a sacrificial layer on a semiconductor substrate including a storage node contact plug, etching the sacrificial layer to form a region exposing the storage node contact plug, forming a first conductive material within an inner side of the region, burying a second conductive material within the region in which the first conductive material is formed, and removing the sacrificial layer to form a pillar type storage node.
摘要:
A semiconductor device having a high aspect cylindrical capacitor and a method for fabricating the same is presented. The high aspect cylindrical type capacitor is a stable structure which is not prone to causing bunker defects and losses in a guard ring. The semiconductor device includes the cylindrical type capacitor structure, a storage node oxide, a guard ring hole, a conducive layer, and a capping oxide. The cylindrical type capacitor structure in a cell region includes a cylindrical type lower electrode, a dielectric and an upper electrode. The storage node oxide is in a peripheral region over the semiconductor substrate. The conductive layer coating the guard ring hole. The guard ring hole at a boundary of the peripheral region that adjoins the cell region over the semiconductor substrate. The capping oxide partially fills in a part of the conductive layer. The gapfill film filling in the rest of the conductive layer.
摘要:
A capacitor is made by forming a buffer oxide layer, an etching stop layer, and a mold insulation layer over a semiconductor substrate having a storage node contact plug. The mold insulation layer and the etching stop layer are etched to form a hole in an upper portion of the storage node contact plug. A tapering layer is deposited over the mold insulation layer including the hole. The tapering layer and the buffer oxide layer are etched back so that the tapering layer is remained only at the upper end portion of the etched hole. A metal storage node layer formed on the etched hole over the remaining tapering layer. The mold insulation layer and the remaining tapering layer are removed to form a cylindrical storage node having a tapered upper end. A dielectric layer and a plate node are formed over the storage node.
摘要:
A semiconductor device that prevents the leaning of storage node when forming a capacitor having high capacitance includes a plurality of cylinder-shaped storage nodes formed over a semiconductor substrate; and support patterns formed to fix the storage nodes in the form of an ‘L’ or a ‘+’ when viewed from the top. This semiconductor device having support patterns in the form of an ‘L’ or a ‘+’ reduces stress on the storage nodes when subsequently forming a dielectric layer and plate nodes that prevents the capacitors from leaking.
摘要:
A laser annealing method for manufacturing a semiconductor device is presented. The method includes at least two forming steps and one annealing step. The first forming steps includes forming gates on a semiconductor substrate. The second forming step includes forming an insulation layer on the semiconductor substrate and on the gates. The annealing step includes annealing the insulation layer using electromagnetic radiation emitted from a laser.
摘要:
Disclosed herein is a method of fabricating a semiconductor device having a metal fuse. The method includes forming a plate electrode on a semiconductor substrate, forming an interlayer insulating layer on the plate electrode, forming a barrier metal layer containing either silicon or aluminum, a first metal layer and an antireflection layer containing either silicon or aluminum sequentially from bottom to top on the interlayer insulating layer. The method also includes patterning the antireflection layer, the first metal layer, and the barrier metal layer to form a first metal interconnection. The method also includes forming a fuse with the same material and structure as those of the first metal interconnection while forming the first metal interconnection. The method further includes forming an inter-metal dielectric layer on the first metal interconnection and the fuse, forming a second metal interconnection on the inter-metal dielectric layer, forming a passivation layer on the second metal interconnection, and forming a fuse box in the passivation layer.