Abstract:
The invention discloses a screening test paper reading system comprising a screening test paper, a test paper carrier, a delivery unit and a reading unit. The screening test paper is provided with a plurality of reaction zones thereon for reacting with a plurality of specific samples, and changing their own color. The test paper carrier is provided with a bearing groove thereon for accommodating the screening test paper and the test paper carrier is provided with a plurality of positioning parts and a gearing part thereon. The delivery unit has a driving device and a detection device. When the detection device detects a plurality of positioning parts on the test paper carrier, the driving device is activated and the test paper carrier is moved by the gearing part so that the reading unit retrieves a color signal on each the reaction zone, whereby the screening test paper reading system can achieve an effect of a fast screening and protection of the screening test paper.
Abstract:
The invention provides a test strip comprising an identification region coded a screen function of the test strip by a chromaticity coordinates model; a calibration region having a particular color for calibrating an external spectrum analyzer; and a reaction region chemically reacted with a specific specimen for changing its own color. By using the external spectrum analyzer to conduct light splitting of the reflective lights from the recognition and reaction regions of the test strip, automatic recognition and simplified usage can be achieved.
Abstract:
An optical module of a micro spectrometer with tapered slit and slit structure thereof. The optical module includes an input section and a micro diffraction grating. The input section includes a slit structure, which receives a first optical signal and outputs a second optical signal travelling along a first optical path. The slit structure includes a substrate and a slit, which penetrates through the substrate and has a gradually reduced dimension from a first surface of the substrate to a second surface of the substrate. The micro diffraction grating, disposed on the first optical path, receives the second optical signal and separates the second optical signal into a plurality of spectrum components travelling along a second optical path. The optical module of the micro spectrometer with the tapered slit and slit structure thereof according to the embodiment of the invention can be manufactured in a mass-production manner using the semiconductor manufacturing processes, so that the cost can be decreased, and the slit can have a smooth surface, which avoids the negative effect on the incident light.
Abstract:
An optical module of a micro spectrometer with tapered slit and slit structure thereof. The optical module includes an input section and a micro diffraction grating. The input section includes a slit structure, which receives a first optical signal and outputs a second optical signal travelling along a first optical path. The slit structure includes a substrate and a slit, which penetrates through the substrate and has a gradually reduced dimension from a first surface of the substrate to a second surface of the substrate. The micro diffraction grating, disposed on the first optical path, receives the second optical signal and separates the second optical signal into a plurality of spectrum components travelling along a second optical path. The optical module of the micro spectrometer with the tapered slit and slit structure thereof according to the embodiment of the invention can be manufactured in a mass-production manner using the semiconductor manufacturing processes, so that the cost can be decreased, and the slit can have a smooth surface, which avoids the negative effect on the incident light.
Abstract:
An optical wavelength dispersion device includes a first substrate, an input unit formed on the first substrate having a slit for receiving an optical signal, a grating formed on the first substrate for producing a first light beam form the optical signal for outputting, and a second substrate covered on the top of the input unit and the grating, wherein the input unit and the grating are formed from a photo-resist layer by high energy light source exposure.
Abstract:
The present invention relates to an imaging device simultaneous records image and spectrum of an interested target utilizes spectral technology to acquire, process and exploit image data or spectrum data. The present invention allows for real time detection and identification of not only the traditional images but also the spectrum which shows the surface of the earth or reveals the chemical composition of the targeted tissue. The present invention includes a reflecting telescope, an imaging concave grating (ICG) system with spectrometer and a processor that performs spectral analysis on spectral data generated from the spectrometer.
Abstract:
An optical wavelength dispersion device is disclosed, which includes a waveguide unit and an adjustable reflecting unit, wherein the waveguide unit has a first substrate, an input unit, a grating, a reflector and a second substrate. The input unit is formed on the first substrate and having a slit for receiving an optical signal, a grating is formed on the first substrate for producing an output beam once the optical signal is dispersed, the reflector is formed on the first substrate for reflecting the output beam, the second substrate is located on the input unit, the grating and the reflector, and forms a waveguide space with the first substrate; the adjustable reflecting unit is located outside of the waveguide unit, and is used for changing emitting angle and adjusting focus of the output beam.
Abstract:
An optical wavelength dispersion device and manufacturing method therefor are disclosed, which the optical wavelength dispersion device includes a waveguide unit and a reflector, wherein the waveguide unit has a first substrate, an input unit, a grating and a second substrate. The input unit is formed on the first substrate and having a slit for receiving an optical signal, a grating is formed on the first substrate for producing an output beam once the optical signal is dispersed, the second substrate is located on the input unit and the grating, and forms a waveguide space with the first substrate, the reflector is located outside of the waveguide unit, and is used for change emitting angle of the output beam.
Abstract:
An optical wavelength dispersion device includes a first substrate, an input unit formed on the first substrate having a slit for receiving an optical signal, a grating formed on the first substrate for producing a diffracted light beams from the optical signal, a first optical reflector formed on the first substrate for reflecting the diffracted light beams from the grating for outputting, and a second substrate covered on the top of the input unit and the grating, wherein the input unit, the grating and the first optical reflector are formed from a photo-resist layer by high energy light source exposure.
Abstract:
An optical wavelength dispersion device includes a first substrate, an input unit formed on the first substrate having a slit for receiving an optical signal, a grating formed on the first substrate for producing a first light beam form the optical signal for outputting, and a second substrate covered on the top of the input unit and the grating, wherein the input unit and the grating are formed from a photo-resist layer by high energy light source exposure.