Abstract:
A spacer formed of an intermetallic compound, such as nitinol. The spacer includes two segments shaped in opposing arches. The unique properties of the intermetallic compound enable the material to be deformed into a planar, insertable shape when the material is cooled below a transition temperature and returns to the undeformed shape when the material returns to an ambient, operational temperature. An expansion mechanism assembly can engage with the spacer to apply an expansion force. The expansion force extends the spacer longitudinally drawing the spacer into the planar configuration. The expansion mechanism assembly can be used to guide the spacer into the desired position within the patient. The spacer control mechanism assembly is subsequently removed, relieving the expansion force. The spacer returns to the natural undeformed shape as it returns to body temperature. Retention features can be integrated in the spacer to aid in retaining the spacer in location.
Abstract:
A spacer formed of an intermetallic compound, such as nitinol. The spacer includes at least two segments shaped in opposing arches. The unique properties of the intermetallic compound enable the material to be deformed into a planar, insertable shape when the material is cooled below a transition temperature and returns to the undeformed shape when the material returns to an ambient, operational temperature. An expansion mechanism assembly engages with the spacer to apply an expansion force, extending the spacer longitudinally drawing the spacer into the planar configuration. The expansion mechanism assembly can be used to guide the spacer into the desired position within the patient. The spacer control mechanism assembly is subsequently removed, relieving the expansion force, returning the spacer to the natural un-deformed, arched shape as it returns to body temperature. Retention features can be integrated in the spacer to aid in retaining the spacer in location.
Abstract:
A spacer formed of an intermetallic compound, such as nitinol. The spacer includes two segments shaped in opposing arches. The unique properties of the intermetallic compound enable the material to be deformed into a planar, insertable shape when the material is cooled below a transition temperature and returns to the undeformed shape when the material returns to an ambient, operational temperature. An expansion mechanism assembly can engage with the spacer to apply an expansion force. The expansion force extends the spacer longitudinally drawing the spacer into the planar configuration. The expansion mechanism assembly can be used to guide the spacer into the desired position within the patient. The spacer control mechanism assembly is subsequently removed, relieving the expansion force. The spacer returns to the natural undeformed shape as it returns to body temperature. Retention features can be integrated in the spacer to aid in retaining the spacer in location.
Abstract:
A method for assembling a ventilation system is provided. The method includes providing a ventilation hood that includes a cover portion and a discharge portion extending from the cover portion. The cover portion includes a first aperture, an opposite second aperture, and a cavity therein, wherein an interior of the discharge portion is in flow communication with the cover portion cavity. The method also includes coupling a rotatable member at least partially within the ventilation hood, such that the rotatable member extends at least partially through at least one of the first and second apertures, and such that rotation of the rotatable member induces a windage-driven flow of fluid between a portion of the rotatable member and at least one of the first and second apertures.
Abstract:
A method for assembling a ventilation system is provided. The method includes providing a ventilation hood that includes a cover portion and a discharge portion extending from the cover portion. The cover portion includes a first aperture, an opposite second aperture, and a cavity therein, wherein an interior of the discharge portion is in flow communication with the cover portion cavity. The method also includes coupling a rotatable member at least partially within the ventilation hood, such that the rotatable member extends at least partially through at least one of the first and second apertures, and such that rotation of the rotatable member induces a windage-driven flow of fluid between a portion of the rotatable member and at least one of the first and second apertures.
Abstract:
A method and system for gas turbine emissions management through delivery of a diluent fluid stream (steam, CO2, N2 etc) into a gas turbine combustion system while the gas turbine is operating on a conventional fuel such as light distillate oil or natural gas. The diluent injection system delivers required diluent-to-fuel ratios over the emissions compliance operating range of the gas turbine. The method for diluent injection is coupling the injection system to a gas turbine compressor discharge purge system, such that the diluent fluid is mixed with compressor discharge air. The mixed compressor discharge purge air and diluent stream are injected into the gas turbine combustor through a non-fueled combustion fuel nozzle passage to achieve emissions guarantee compliance.
Abstract:
The instant invention describes a surgical tool for providing cavitations, or void spots, within the interior of body regions. The surgical tool is constructed and arranged to penetrate almost all interior body regions in which formation of a cavity or void space is necessary for diagnostic or treatment purposes. The surgical tool comprises an insertable member receiving structure sized and shaped to receive one or more insertable devices. The interior lumen of the insertable member receiving structure allows the insertable device to slide and/or rotate relative to the insertable member receiving structure and vice versa. At least one insertable member is a cavity forming device which has a plurality of cavity forming members constructed and arranged with spring-like characteristics for traversing between a cavity forming position and a non-cavity forming position. Upon traversal back to the cavity forming position, the displacement members retain their cavity forming structural configurations.