摘要:
A transparent cover glass for applications such as, but not limited to, touch screen devices that embody antimicrobial properties that include s being antibacterial, antifungal, and antiviral. The antimicrobial glasses contain nanoparticles of Cu or Cu2O on the surface of the glass. The antimicrobial glasses can further have a fluorosilane coating or other coating on the surface to make the glasses easy-to-clean. Also, glass surfaces having an antibacterial or antimicrobial surfaces and a protective coating on the surface that do not inhibit the antibacterial or antimicrobial properties of the glass are described. The disclosure is further directed to methods of making such articles.
摘要:
A transparent cover glass for applications such as, but not limited to, touch screen devices that embody antimicrobial properties that include s being antibacterial, antifungal, and antiviral. The antimicrobial glasses contain nanoparticles of Cu or Cu2O on the surface of the glass. The antimicrobial glasses can further have a fluorosilane coating or other coating on the surface to make the glasses easy-to-clean. Also, glass surfaces having an antibacterial or antimicrobial surfaces and a protective coating on the surface that do not inhibit the antibacterial or antimicrobial properties of the glass are described. The disclosure is further directed to methods of making such articles.
摘要:
The disclosure is directed to a chemically strengthened glass having antimicrobial properties and to a method of making such glass. In particular, the disclosure is directed to a chemically strengthened glass with antimicrobial properties and with a low surface energy coating on the glass that does not interfere with the antimicrobial properties of the glass. The antimicrobial has an Ag ion concentration on the surface in the range of greater than zero to 0.047 μg/cm2. The glass has particular applications as antimicrobial shelving, table tops and other applications in hospitals, laboratories and other institutions handling biological substances, where color in the glass is not a consideration.
摘要翻译:本公开涉及具有抗微生物性质的化学强化玻璃和制造这种玻璃的方法。 特别地,本公开涉及具有抗微生物性质的化学强化玻璃,并且在玻璃上具有不影响玻璃的抗微生物性能的低表面能涂层。 抗微生物剂在表面上具有大于0至0.047μg/ cm 2的范围内的Ag离子浓度。 该玻璃在医院,实验室和其他处理生物物质的机构中具有抗菌架,桌面和其他应用的特殊应用,其中不考虑玻璃中的颜色。
摘要:
The disclosure is directed to a chemically strengthened glass having antimicrobial properties and to a method of making such glass. In particular, the disclosure is directed to a chemically strengthened glass with antimicrobial properties and with a low surface energy coating on the glass that does not interfere with the antimicrobial properties of the glass. The antimicrobial has an Ag ion concentration on the surface in the range of greater than zero to 0.047 μg/cm2. The glass has particular applications as antimicrobial shelving, table tops and other applications in hospitals, laboratories and other institutions handling biological substances, where color in the glass is not a consideration.
摘要翻译:本公开涉及具有抗微生物性质的化学强化玻璃和制造这种玻璃的方法。 特别地,本公开涉及具有抗微生物性质的化学强化玻璃,并且在玻璃上具有不影响玻璃的抗微生物性能的低表面能涂层。 抗微生物剂在表面上具有大于0至0.047μg/ cm 2的范围内的Ag离子浓度。 该玻璃在医院,实验室和其他处理生物物质的机构中具有抗菌架,桌面和其他应用的特殊应用,其中不考虑玻璃中的颜色。
摘要:
A bioactive borate glass composition including, for example: 30 to 60% B2O3; 0.5 to 20% ZrO2; 3 to 30% Na2O; 0.1 to 15% K2O; 0.1 to 15% MgO; 5 to 30% CaO; and 1 to 5% P2O5 in mole percents based on 100 mol % of the total composition. Also disclosed is a method of making and method of using the compositions and the bioactive borate glass dentin treatment formulations.
摘要:
A flow cell article is provided where the flow cell article includes a substrate having one or more layers; a fluidic channel disposed in the substrate wherein the fluidic channel includes at least one reactive surface comprising: a coupling agent having a first functional group covalently attached to the substrate of the fluidic channel and a second imide functional group covalently attached to a polymer of formula (I), where R1 is a residue of an unsaturated monomer that has been copolymerized with maleic anhydride; R2 is H, an alkyl group, an oligo(ethylene glycol), and/or a dialkyl amine; m, n, and o are each from 1 to 10,000; X is a divalent NH, O, and/or S; and Z is the first functional group.
摘要:
An exfoliant composition including: a microbead comprising a core and a shell: the core comprising an abrasive particle having an average particle size of from 50 to 1,000 microns; and the shell comprising a hydrogel. Also disclosed is a method of making the exfoliant composition and a method of using the exfoliant composition.
摘要:
A flow cell article including: a chamber; and at least one surface of the chamber comprising: a solid substrate having a reactive surface comprising: a coupling agent covalently attached to the solid substrate; a polymer of the formula (I) as defined herein, covalently attached to the coupling agent; anda nucleic acid probe covalently attached to the polymer. Also disclosed is a method of making the article and a method of using the article.
摘要:
An antimicrobial article having a substrate, and a coating on a surface of the substrate. The coating includes a silver-containing alkali silicate. The antimicrobial article has an antimicrobial efficacy of greater than or equal to about 90.0% according to EPA Test Method for Efficacy of Copper Alloy Surfaces as a Sanitizer. The coating may further include at least one of a boron-containing compound and an aluminum-containing compound. A method for forming antimicrobial articles includes coating a substrate with a mixture comprising an alkali silicate; curing the coating at a temperature from greater than or equal to about 300° C. to less than or equal to about 620° C. for a duration of greater than or equal to about 15 minutes to less than or equal to about 120 minutes; and contacting the coating with an antimicrobial medium comprising silver nitrate and an alkali nitrate.
摘要:
The present disclosure is directed to an antimicrobial composite material, and more particularly to an antimicrobial composite material comprising particles having a metal or metal alloy core and a porous inorganic material shell, coatings including the antimicrobial composite material, and methods of making the same. In some embodiments, Cu—SiO2 core-shell particles are disclosed in which the Cu core provides antimicrobial activity and the porous SiO2 shell functions as a barrier for the Cu core, thus preventing the Cu core from being directly exposed to air or moisture.