Abstract:
A glass manufacturing apparatus can include a conduit connected to a delivery vessel and an inlet of a forming vessel. The conduit includes a closed sidewall surrounding a channel extending in a flow direction of the conduit. The closed sidewall is continuous from the delivery vessel to the inlet of the forming vessel to define a closed atmosphere from the delivery vessel, through the conduit, and through the inlet of the forming vessel. The glass manufacturing apparatus can include a heating enclosure including a heating wall and a first heating element. The heating wall surrounds a chamber within which the conduit extends. The first heating element is positioned within the chamber between the heating wall and the conduit to increase a temperature within the channel. Methods for manufacturing a glass ribbon with a glass manufacturing apparatus are provided.
Abstract:
A glass forming apparatus and method include a weir on at least a first side of a molten core glass reservoir. The weir includes an inclined surface that, in the intended direction of molten glass flow, slopes downward in the vertical direction while extending away from the molten core glass reservoir in the horizontal direction. A source of molten clad glass is configured above the glass forming apparatus such that when molten clad glass is flowing down and molten core glass is flowing over the weir, the molten clad glass drops onto the molten core glass at a highest upstream contact point that is located directly above the inclined surface of the weir.
Abstract:
A forming body of a glass forming apparatus may include a first conduit comprising a first conduit wall and at least one slot in the first conduit wall, and a second conduit disposed above and vertically aligned with the first conduit, the second conduit comprising a second conduit wall and a slot extending through the second conduit wall. The forming body may include a first vertical wall and a second vertical wall extending between an outer surface of the second conduit wall and an outer surface of the first conduit wall at a first side and a second side, respectively, of the forming body. The forming body may include a first forming surface and a second forming surface extending from an outer surface of the first conduit wall and converging at a root of the forming body. Methods of forming a continuous laminate glass ribbon are also disclosed.
Abstract:
A forming body of a glass forming apparatus may include a first conduit comprising a first conduit wall and at least one slot in the first conduit wall, and a second conduit disposed above and vertically aligned with the first conduit, the second conduit comprising a second conduit wall and a slot extending through the second conduit wall. The forming body may include a first vertical wall and a second vertical wall extending between an outer surface of the second conduit wall and an outer surface of the first conduit wall at a first side and a second side, respectively, of the forming body. The forming body may include a first forming surface and a second forming surface extending from an outer surface of the first conduit wall and converging at a root of the forming body. Methods of forming a continuous laminate glass ribbon are also disclosed.
Abstract:
A glass forming apparatus and method include a weir on at least a first side of a molten core glass reservoir. The weir includes an inclined surface that, in the intended direction of molten glass flow, slopes downward in the vertical direction while extending away from the molten core glass reservoir in the horizontal direction. A source of molten clad glass is configured above the glass forming apparatus such that when molten clad glass is flowing down and molten core glass is flowing over the weir, the molten clad glass drops onto the molten core glass at a highest upstream contact point that is located directly above the inclined surface of the weir.
Abstract:
A glass manufacturing apparatus can include a conduit connected to a delivery vessel and an inlet of a forming vessel. The conduit includes a closed sidewall surrounding a channel extending in a flow direction of the conduit. The closed sidewall is continuous from the delivery vessel to the inlet of the forming vessel to define a closed atmosphere from the delivery vessel, through the conduit, and through the inlet of the forming vessel. The glass manufacturing apparatus can include a heating enclosure including a heating wall and a first heating element. The heating wall surrounds a chamber within which the conduit extends. The first heating element is positioned within the chamber between the heating wall and the conduit to increase a temperature within the channel. Methods for manufacturing a glass ribbon with a glass manufacturing apparatus are provided.
Abstract:
A method includes forming a glass article. The glass article includes a core and a clad adjacent to the core. The core includes a first glass composition. The clad includes a second glass composition different than the first glass composition. A degradation rate of the second glass composition in a reagent is greater than a degradation rate of the first glass composition in the reagent.
Abstract:
A method includes forming a glass article. The glass article includes a core and a clad adjacent to the core. The core includes a first glass composition. The clad includes a second glass composition different than the first glass composition. A degradation rate of the second glass composition in a reagent is greater than a degradation rate of the first glass composition in the reagent.
Abstract:
A method for making a glass laminate sheet including: selecting a core glass composition and a clad glass composition combination for a glass laminate structure; determining and comparing the viscosity and coefficient of thermal expansion (CTE) profiles for each of the selected core and the clad glass compositions with each other over a temperature range of interest including the onset of viscoelasticity to ambient temperature; and processing the selected core and clad glass composition in a laminate fusion draw apparatus to form a laminate glass sheet in accordance with at least one difference condition for the clad effective coefficient thermal expansion (CTEeff core) and the core effective coefficient thermal expansion (CTEeff core). Another method for making a glass laminate sheet includes controlling the cooling rate to control the resulting strength of the laminate.
Abstract:
A method for making a glass laminate sheet including: selecting a core glass composition and a clad glass composition combination for a glass laminate structure; determining and comparing the viscosity and coefficient of thermal expansion (CTE) profiles for each of the selected core and the clad glass compositions with each other over a temperature range of interest including the onset of viscoelasticity to ambient temperature; and processing the selected core and clad glass composition in a laminate fusion draw apparatus to form a laminate glass sheet in accordance with at least one difference condition for the clad effective coefficient thermal expansion (CTEeff core) and the core effective coefficient thermal expansion (CTEeff core). Another method for making a glass laminate sheet includes controlling the cooling rate to control the resulting strength of the laminate.