Abstract:
An optoelectronic device including: a first, p-doped semiconductor layer and a second, n-doped semiconductor layer which are superposed and form a p-n junction; a first electrode electrically connected to the first semiconductor layer and forming an anode of the device; a gate positioned against at least one lateral flank of the first semiconductor layer; a second electrode, positioned against a lateral flank of the second semiconductor layer, electrically connected to the second semiconductor layer and electrically isolated from the first semiconductor layer; and in which a portion of the second electrode is positioned against the gate such that the second electrode is electrically connected to the gate and forms both a gate electrode and a cathode of the device.
Abstract:
The invention relates to an optoelectronic light-emitting device (1), including: at least one light-emitting diode (40) having an emitting surface (44) adapted to emit so-called excitation luminous radiation; and a photoluminescent material (31) that coats the emitting surface (44), the photoluminescent material containing photoluminescent particles adapted to convert said excitation luminous radiation through the emitting surface (44) at least in part into so-called photoluminescence luminous radiation. The optoelectronic device includes at least one photodiode (50) adjacent the light-emitting diode (40) having a receiving surface (54) coated by the photoluminescent material (31) and adapted to detect at least part of the excitation radiation and/or the photoluminescence radiation coming from the photoluminescent material (31) through the receiving surface.
Abstract:
A method of making a display device comprising at least implementation of the following steps: fabricate a matrix of LEDs each comprising electrodes accessible from a back face of the LED matrix and light emitting surfaces on a front face of the LED matrix; securing a stack of layers comprising at least one semiconducting layer, a gate dielectric layer and a layer of gate conducting material, onto the back face of the LED matrix; starting from the stack of layers, fabricate an electronic control circuit electrically coupled to the electrodes of the LEDs, including the fabrication of FET transistors of which active zones are formed in the semiconducting layer and of which the gates are formed in the gate dielectric layer and in the layer of gate conducting material.
Abstract:
An optoelectronic device including a support having a rear surface and a front surface opposite each other, a plurality of nucleation conductive strips forming first polarization electrodes, an intermediate insulating layer covering the nucleation conductive strips, a plurality of diodes, each of which having a first, three-dimensional doped region and a second doped region, and a plurality of top conductive strips forming second polarization electrodes and resting on the intermediate insulating layer, each top conductive strip being disposed in such a way as to be in contact with the second doped regions of a set of diodes of which the first doped regions are in contact with different nucleation conductive strips.
Abstract:
An optoelectronic device is provided, including light-emitting diodes arranged such that: N diodes of said plurality, where N ≥2, are connected in series and are configured to be forward-biased, and at least one diode is connected in parallel to the N diodes and is configured to be reverse-biased and to form a Zener diode, wherein a sum of threshold voltages of the N diodes is less than a breakdown voltage of the Zener diode, and the light-emitting diodes include a stack of semiconductive portions including a first conductivity-type doped portion, a second conductivity-type doped portion opposite the first type, and a first intermediate portion doped according to the first type and being disposed between said first and second portions and having a doping level such that the breakdown voltage is greater than the sum of the threshold voltages of each of the N diodes.
Abstract:
An optoelectronic device comprising a mesa structure including: a first and a second semiconductor portions forming a p-n junction, a first electrode electrically connected to the first portion which is arranged between the second portion and the first electrode, the device further comprising: a second electrode electrically connected to the second portion, an element able to ionize dopants of the first and/or second semiconductor portion through generating an electric field in the first and/or second semiconductor portion and overlaying at least one part of the side flanks of at least one part of the first and/or second semiconductor portion and of at least one part of a space charge zone formed by the first and second semiconductor portions, upper faces of the first electrode and of the second electrode form a substantially planar continuous surface.
Abstract:
A method for manufacturing an optoelectric device comprising a semiconductor substrate, pads on a surface of the substrate; semiconductor elements, each element being in contact with a pad; and a dielectric region extending in the substrate from the surface and connecting, for each pair of pads, one of the pads in the pair to the other pad in the pair, the method successively comprising the forming of the pads and the forming of the region, wherein the region is formed by nitriding of the substrate, the method comprising the successive steps of: depositing a layer on the substrate; forming portions on the layer; etching the parts of the layer which are not covered with the portions to form the pads; removing the portions; and nitriding the pads and the parts of the substrate which are not covered with the pads, wherein the nitriding step successively comprises: a first step of nitriding of the pads at a first temperature; and a second step of nitriding of the parts of the substrate which are not covered with the pads at a second temperature different from the first temperature.
Abstract:
A process for producing at least two adjacent regions, each comprising an array of light-emitting wires connected together in a given region by a transparent conductive layer, comprises: producing, on a substrate, a plurality of individual zones for growing wires extending over an area greater than the cumulative area of the two chips; growing wires in the individual growth zones; removing wires from at least one zone forming an initial free area to define the arrays of wires, the initial free area comprising individual growth zones level with the removed wires; and depositing a transparent conductive layer on each array of wires to electrically connect the wires of a given array of wires, each conductive layer being separated from the conductive layer of the neighbouring region by a free area. A device obtained using the process of the invention is also provided.
Abstract:
There is provided an electronic device including at least two diodes each having a mesa structure, including: a first and a second doped semiconductor portion forming a p-n junction, such that a first part of the second doped semiconductor portion located between a second part of the second doped semiconductor portion and the first doped semiconductor portion forms an offset from the second part; a first electrode electrically connected to the first portion, and a second electrode electrically connected to the second portion at an upper face of the second part; and dielectric portions covering side faces of the first portion, the second portion, and the first electrode, wherein upper faces of the first electrode, the second electrode, and the dielectric portions form an approximately plane continuous surface.
Abstract:
A method for obtaining mesas that are made at least in part of a nitride (N), the method includes providing a stack comprising a substrate and at least the following layers disposed in succession from the substrate a first layer, referred to as the flow layer, and a second, crystalline layer, referred to as the crystalline layer; forming pads by etching the crystalline layer and at least one portion of the flow layer such that: —each pad includes at least: —a first section, referred to as the flow section, formed by at least one portion of the flow layer, and a second, crystalline section, referred to as the crystalline section, framed by the crystalline layer and overlying the flow section, the pads are distributed over the substrate so as to form a plurality of sets of pads; and epitaxially growing a crystallite on at least some of said pads and continuing the epitaxial growth of the crystallites until the crystallites carried by the adjacent pads of the same set coalesce.