Abstract:
An example method for path optimization in distributed service chains in a network environment is provided and includes receiving information about inter-node latency of a distributed service chain in a network environment comprising a distributed virtual switch (DVS), where the inter-node latency is derived at least from packet headers of respective packets traversing a plurality of service nodes comprising the distributed service chain, and modifying locations of the service nodes in the DVS to reduce the inter-node latency. In specific embodiments, the method further includes storing and time-stamping a path history of each packet in a network service header portion of the respective packet header. A virtual Ethernet Module (VEM) of the DVS stores and time-stamps the path history and a last VEM in the distributed service chain calculates runtime traffic latencies from the path history and sends the calculated runtime traffic latencies to a virtual supervisor module.
Abstract:
Systems, methods, and computer-readable media provide for collection of statistics relating to network traffic between virtual machines (VMs) in a network. In an example embodiment, a virtual switch hosted on a physical server provides network address information of VMs deployed on the physical server to a virtual switch controller. The controller collects this network address information from each virtual switch under its control, and distributes the aggregate address information to each switch. In this manner, the controller and each switch within the controller's domain can learn the network address information of each VM deployed on physical servers hosting switches under the controller's control. Each virtual switch can determine a classification of a frame passing through the switch (e.g., intra-server, inter-server and intra-domain, or inter-domain traffic), and statistics relating to the traffic. In an example embodiment, the virtual switch controller can collect the statistics from each switch within its domain.
Abstract:
An example method is provided and, in an example embodiment, includes receiving a data packet at an ingress switch function, the data packet associated with a data packet flow; obtaining access control information associated with a destination of the data packet flow from a centralized service engine; and performing access filtering on the data packet flow at the ingress switch function using the access control information.
Abstract:
An example method is provided and, in an example embodiment, includes receiving a data packet at an ingress switch function, the data packet associated with a data packet flow; obtaining access control information associated with a destination of the data packet flow from a centralized service engine; and performing access filtering on the data packet flow at the ingress switch function using the access control information.
Abstract:
An example method for path optimization in distributed service chains in a network environment is provided and includes receiving information about inter-node latency of a distributed service chain in a network environment comprising a distributed virtual switch (DVS), where the inter-node latency is derived at least from packet headers of respective packets traversing a plurality of service nodes comprising the distributed service chain, and modifying locations of the service nodes in the DVS to reduce the inter-node latency. In specific embodiments, the method further includes storing and time-stamping a path history of each packet in a network service header portion of the respective packet header. A virtual Ethernet Module (VEM) of the DVS stores and time-stamps the path history and a last VEM in the distributed service chain calculates runtime traffic latencies from the path history and sends the calculated runtime traffic latencies to a virtual supervisor module.
Abstract:
Systems, methods, and computer-readable storage media are provided for managing connected data transfer sessions in a computing network. A controller included in the computing network can monitor connected data transfer sessions to determine whether a predetermined threshold has been met or exceeded and, if so, terminate at least one connected data transfer session in the computing network. The threshold can include a threshold number of connected data communication sessions and/or a threshold amount of resources utilized by the connected data communication sessions. The controller can terminate connected data transfer sessions until the total number of connected data communication sessions and/or threshold amount of resources falls below the threshold.
Abstract:
Systems, methods, and computer-readable storage media are provided for managing connected data transfer sessions in a computing network. A controller included in the computing network can monitor connected data transfer sessions to determine whether a predetermined threshold has been met or exceeded and, if so, terminate at least one connected data transfer session in the computing network. The threshold can include a threshold number of connected data communication sessions and/or a threshold amount of resources utilized by the connected data communication sessions. The controller can terminate connected data transfer sessions until the total number of connected data communication sessions and/or threshold amount of resources falls below the threshold.
Abstract:
Systems, methods, and computer-readable media provide for collection of statistics relating to network traffic between virtual machines (VMs) in a network. In an example embodiment, a virtual switch hosted on a physical server provides network address information of VMs deployed on the physical server to a virtual switch controller. The controller collects this network address information from each virtual switch under its control, and distributes the aggregate address information to each switch. In this manner, the controller and each switch within the controller's domain can learn the network address information of each VM deployed on physical servers hosting switches under the controller's control. Each virtual switch can determine a classification of a frame passing through the switch (e.g., intra-server, inter-server and intra-domain, or inter-domain traffic), and statistics relating to the traffic. In an example embodiment, the virtual switch controller can collect the statistics from each switch within its domain.
Abstract:
Systems, methods, and computer-readable media provide for collection of statistics relating to network traffic between virtual machines (VMs) in a network. In an example embodiment, a virtual switch hosted on a physical server provides network address information of VMs deployed on the physical server to a virtual switch controller. The controller collects this network address information from each virtual switch under its control, and distributes the aggregate address information to each switch. In this manner, the controller and each switch within the controller's domain can learn the network address information of each VM deployed on physical servers hosting switches under the controller's control. Each virtual switch can determine a classification of a frame passing through the switch (e.g., intra-server, inter-server and intra-domain, or inter-domain traffic), and statistics relating to the traffic. In an example embodiment, the virtual switch controller can collect the statistics from each switch within its domain.
Abstract:
Systems, methods, and computer-readable media provide for collection of statistics relating to network traffic between virtual machines (VMs) in a network. In an example embodiment, a virtual switch hosted on a physical server provides network address information of VMs deployed on the physical server to a virtual switch controller. The controller collects this network address information from each virtual switch under its control, and distributes the aggregate address information to each switch. In this manner, the controller and each switch within the controller's domain can learn the network address information of each VM deployed on physical servers hosting switches under the controller's control. Each virtual switch can determine a classification of a frame passing through the switch (e.g., intra-server, inter-server and intra-domain, or inter-domain traffic), and statistics relating to the traffic. In an example embodiment, the virtual switch controller can collect the statistics from each switch within its domain.