Abstract:
In one embodiment, a method comprises creating, in a computing network, a loop-free routing topology comprising a plurality of routing arcs for reaching multicast listeners from a multicast source, each routing arc comprising a first network device as a first end of the routing arc, a second network device as a second end of the routing arc, and at least a third network device configured for receiving from each of the first and second network devices a copy of a multicast packet originated from the multicast source; and causing the multicast packet to be propagated throughout the loop-free routing topology based on the first and second ends of each routing arc forwarding the corresponding copy into the corresponding routing arc.
Abstract:
In one embodiment, a system includes a first network, a second network, and a core network connecting the first network to the second network. The first network includes a first set of two or more network devices, wherein the first network has a first spanning tree associated therewith. Similarly, the second network includes a second set of two or more network devices, wherein the second network has a second spanning tree associated therewith, wherein the second spanning tree is separate from the first spanning tree.
Abstract:
In one embodiment, a method comprises creating, in a computing network, a loop-free routing topology comprising a plurality of routing arcs for reaching a destination device, each routing arc comprising a first network device as a first end of the routing arc, a second network device as a second end of the routing arc, and at least a third network device configured for routing any network traffic along the routing arc toward the destination device via any one of the first or second ends of the routing arc; and causing the network traffic to be forwarded along at least one of the routing arcs to the destination device.
Abstract:
In one embodiment, a method comprises creating, in a computing network, a loop-free routing topology comprising a plurality of routing arcs for reaching a destination network node, each routing arc comprising a first network node as a first end of the routing arc, a second network node as a second end of the routing arc, and at least a third network node configured for routing any network traffic along the routing arc toward the destination node via any one of the first or second ends of the routing arc, at least one of the first, second, or third network nodes are implemented as a ring-based network having a prescribed ring topology; and establishing loop-free label switched paths for reaching the destination network node via the routing arcs of the loop-free routing topology, the label switched paths independent and distinct from any attribute of the prescribed ring topology.
Abstract:
In one embodiment, a method comprises creating, in a computing network, a loop-free routing topology comprising a plurality of routing arcs for reaching a destination network node, each routing arc comprising a first network node as a first end of the routing arc, a second network node as a second end of the routing arc, and at least a third network node configured for routing any network traffic along the routing arc toward the destination node via any one of the first or second ends of the routing arc, the loop-free routing topology providing first and second non-congruent paths; and forwarding bicasting data, comprising a data packet in a first direction from a network node and a bicasted copy of the data packet in a second direction from the network node, concurrently to the destination node respectively via the first and second non-congruent paths.
Abstract:
In one embodiment, a method comprises creating, in a computing network, a loop-free routing topology comprising a plurality of routing arcs for reaching a destination device, each routing arc comprising a first network device as a first end of the routing arc, a second network device as a second end of the routing arc, and at least a third network device configured for routing any network traffic along the routing arc toward the destination device via any one of the first or second ends of the routing arc; and causing the network traffic to be forwarded along at least one of the routing arcs to the destination device.