Abstract:
A drawing apparatus which performs drawing on a substrate with a plurality of charged particle beams includes: a blanking device configured to individually blank the plurality of charged particle beams; a scanning deflector configured to deflect the plurality of charged particle beams to scan the plurality of charged particle beams on the substrate; and a controller configured to generate a periodic signal to control a periodic deflection operation of the plurality of charged particle beams by the scanning deflector. The controller is configured to adjust an amount of deflection of the plurality of charged particle beams by the scanning deflector in a period of the periodic signal so that a scanning speed of the plurality of charged particle beams becomes a target speed.
Abstract:
The present invention provides a drawing apparatus which performs drawing on a substrate with a plurality of charged particle beams, the apparatus comprising two blanker arrays each including a plurality of first blankers which blank a plurality of charged particle beams individually and a plurality of second blankers which blank a plurality of charged particle beams in common, wherein the plurality of first blankers and the plurality of second blankers in each of the two blanker arrays are arranged such that one of the plurality of charged particle beams passes through corresponding one of the plurality of first blankers of one of the two blanker arrays and corresponding one of the plurality of second blankers of the other of the two blanker arrays.
Abstract:
A drawing apparatus includes: a plurality of charged particle optical systems arranged along a first direction; a storage configured to store drawing data shared by the plurality of charged particle optical systems with respect to each of sub-drawing regions obtained by dividing a drawing region on the substrate of each of the plurality of charged particle optical systems in the first direction; and a controller configured to determine a drawing region on the substrate by each of the plurality of charged particle optical systems as a set of the sub-drawing regions and control each of the plurality of charged particle optical systems based on a corresponding set of the sub-drawing regions.
Abstract:
The present invention provides a transmission apparatus for transmitting a light signal between an outside and an inside of a vacuum chamber, comprising a plurality of first transmission lines configured to transmit a plurality of light signals outside the vacuum chamber, a plurality of second transmission lines configured to transmit the plurality of light signals inside the vacuum chamber, and a light-transmissive member configured to transmit the light signals between the plurality of first transmission lines and the plurality of second transmission lines, wherein the light-transmissive member has a structure formed to isolate light paths of the plurality of light signals between the plurality of first transmission lines and the plurality of second transmission lines from each other.