Abstract:
A combustion system, and method. A combustor oxy-fired at high pressure delivers flue gas at pressure to a condensing means, such as a condensing heat exchanger, to produce a high temperature condensate for delivering thermal energy to an industrial process system, particularly for power generation, including a Brayton cycle, a Rankine cycle, or a binary fluid cycle system such as a Kalina cycle, and in particular as a bottoming cycle for an organic Rankine cycle. The combustor can concurrently provide direct heat to a secondary system, including a Brayton cycle system, a Rankine cycle system, and a binary fluid cycle system such as a Kalina cycle, without requiring significant modifications to the secondary system. The system and method provide for efficient and advantageous use of the higher temperature condensate produced.
Abstract:
A method and system for improving high excess air combustion system efficiency, including induration furnaces, using a re-routing of flue gas within the system by gas recirculation. Flue gas is drawn from hot system zones including zones near the stack, for re-introduction into the process whereby the heat recovery partially replaces fuel input. At least one pre-combustion drying zone, at least one combustion zone, and at least a first cooling zone exist in these furnaces. At least one exhaust gas outlet is provided to each pre-combustion drying and combustion zone. At least part of the gaseous flow from each system zone exhaust outlet is selectively delivered to an overall system exhaust, the remaining flow being selectively delivered via recirculation to cooling zones. Recirculation flow is adjusted to meet required system temperatures and pressures. The method and system provide efficiency improvements, reducing fuel requirements and greenhouse gas emissions.
Abstract:
A method and apparatus for direct contact steam generation for a variety of industrial processes including heavy oil recovery, power generation and pulp and paper applications. The steam generation system consists of a combustor (10) and a steam generator (70) and is constructed to be operable at elevated pressures. The fuel, at least one oxidant and a fluid supply including water are supplied at pressure to the combustor. Flue gas from the combustor (10) is delivered to the direct contact steam generator (70) at pressure, and upon direct contact with water, produces a flue gas stream consisting primarily of steam. This product stream can then be cleansed and used for industrial applications. The combustor (10) can be operated with low grade fuel and low quality water with high solids and hydrocarbon contents. The apparatus and method reduce the environmental footprint by reducing air emission, concentrating CO2 to enable capture and reducing clean water requirements. The removal of solids from the combustor (10) at its second end (62) as well as at the second end of the steam generator (70) as at (78), the use of water injection-type steam quality control and a steam feedback inlet (46) to the combustor (10) from the steam generator (70) enhance the efficiency of the apparatus.
Abstract:
A method and apparatus for direct contact steam generation for a variety of industrial processes including heavy oil recovery, power generation and pulp and paper applications. The steam generation system consists of a combustor (10) and a steam generator (70) and is constructed to be operable at elevated pressures. The fuel, at least one oxidant and a fluid supply including water are supplied at pressure to the combustor. Flue gas from the combustor (10) is delivered to the direct contact steam generator (70) at pressure, and upon direct contact with water, produces a flue gas stream consisting primarily of steam. This product stream can then be cleansed and used for industrial applications. The combustor (10) can be operated with low grade fuel and low quality water with high solids and hydrocarbon contents. The apparatus and method reduce the environmental footprint by reducing air emission, concentrating CO2 to enable capture and reducing clean water requirements. The removal of solids from the combustor (10) at its second end (62) as well as at the second end of the steam generator (70) as at (78), the use of water injection-type steam quality control and a steam feedback inlet (46) to the combustor (10) from the steam generator (70) enhance the efficiency of the apparatus.
Abstract:
A method and system for improving high excess air combustion system efficiency, including induration furnaces, using a re-routing of flue gas within the system by gas recirculation. Flue gas is drawn from hot system zones including zones near the stack, for re-introduction into the process whereby the heat recovery partially replaces fuel input. At least one pre-combustion drying zone, at least one combustion zone, and at least a first cooling zone exist in these furnaces. At least one exhaust gas outlet is provided to each pre-combustion drying and combustion zone. At least part of the gaseous flow from each system zone exhaust outlet is selectively delivered to an overall system exhaust, the remaining flow being selectively delivered via recirculation to cooling zones. Recirculation flow is adjusted to meet required system temperatures and pressures. The method and system provide efficiency improvements, reducing fuel requirements and greenhouse gas emissions.
Abstract:
A conversion burner, a system of conversion burners, and a method of conversion of a solid fuel selected from at least one of biomass and peat. The burner is constructed and arranged to be affixed to a combustor, and comprises a housing defining a burner chamber; a grate within the burner chamber defining an upper chamber region and a lower chamber region; at least a first solid fuel inlet; at least a first air inlet operatively connected to the upper chamber region and connectable to a first air source; a product gas outlet operatively connected to the combustion region of the combustor; and at least one waste outlet. The product gas is delivered to the combustor for firing or co-firing, overcoming fouling problems which result from direct delivery of solid fuel to the combustor, and problems raised by remote conversion or storage of solid fuel.