摘要:
Techniques described herein are directed to performing back-end single-channel suppression of one or more types of interfering sources (e.g., additive noise) in an uplink path of a communication device. The back-end single-channel suppression techniques may suppress types(s) of additive noise using one or more suppression branches (e.g., a non-spatial (or stationary noise) branch, a spatial (or non-stationary noise) branch, a residual echo suppression branch, etc.). The non-spatial branch may be configured to suppress stationary noise from the single-channel audio signal, the spatial branch may be configured to suppress non-stationary noise from the single-channel audio signal and the residual echo suppression branch may be configured to suppress residual echo from the signal-channel audio signal. The spatial branch may be disabled based on an operational mode (e.g., single-user speakerphone mode or a conference speakerphone mode) of the communication device or based on a determination that spatial information is ambiguous.
摘要:
Methods, systems, and apparatuses are described for performing speaker-identification-assisted speech processing in a downlink path of a communication device. In accordance with certain embodiments, a communication device includes speaker identification (SID) logic that is configured to identify the identity of a far-end speaker participating in a voice call with a user of the communication device. Knowledge of the identity of the far-end speaker is then used to improve the performance of one or more downlink speech processing algorithms implemented on the communication device.
摘要:
Systems, devices, and methods are described for providing loudspeaker protection. An upstream loudspeaker model estimation component receives sensed electrical characteristics of a loudspeaker and generates an impedance model from which an excursion model, and associated parameters, of the loudspeaker as well as a gain change parameter may be generated. The impedance components are fitted to features of an estimated impedance, based on the voltage and current sense data, to generate the estimated impedance model that is converted to an excursion model of the loudspeaker. A downstream audio signal processing component, based on the excursion model, or parameters thereof, limits a predicted excursion of the loudspeaker utilizing excursion-constraining processing circuitry that includes a non-linear constraint filter. Processed audio signals associated with the limited excursion are subject to distortion suppression prior to releasing the output audio signals for playback on the loudspeaker.
摘要:
Techniques described herein are directed to performing back-end single-channel suppression of one or more types of interfering sources (e.g., additive noise) in an uplink path of a communication device. The back-end single-channel suppression techniques may suppress types(s) of additive noise using one or more suppression branches (e.g., a non-spatial (or stationary noise) branch, a spatial (or non-stationary noise) branch, a residual echo suppression branch, etc.). The non-spatial branch may be configured to suppress stationary noise from the single-channel audio signal, the spatial branch may be configured to suppress non-stationary noise from the single-channel audio signal and the residual echo suppression branch may be configured to suppress residual echo from the signal-channel audio signal. The spatial branch may be disabled based on an operational mode (e.g., single-user speakerphone mode or a conference speakerphone mode) of the communication device or based on a determination that spatial information is ambiguous.
摘要:
Methods, systems, and apparatuses are described for improved multi-microphone source tracking and noise suppression. In multi-microphone devices and systems, frequency domain acoustic echo cancellation is performed on each microphone input, and microphone levels and sensitivity are normalized. Methods, systems, and apparatuses are also described for improved acoustic scene analysis and source tracking using steered null error transforms, on-line adaptive acoustic scene modeling, and speaker-dependent information. Switched super-directive beamforming reinforces desired audio sources and closed-form blocking matrices suppress desired audio sources based on spatial information derived from microphone pairings. Underlying statistics are tracked and used to updated filters and models. Automatic detection of single-user and multi-user scenarios, and single-channel suppression using spatial information, non-spatial information, and residual echo are also described.
摘要:
Methods, systems, and apparatuses are described for performing speaker-identification-assisted speech processing. In accordance with certain embodiments, a communication device includes speaker identification (SID) logic that is configured to identify a user of the communication device and/or the identity of a far-end speaker participating in a voice call with a user of the communication device. Knowledge of the identity of the user and/or far-end speaker is then used to improve the performance of one or more speech processing algorithms implemented on the communication device.
摘要:
Methods, systems, and apparatuses are described for performing speaker-identification-assisted speech processing in an uplink path of a communication device. In accordance with certain embodiments, a communication device includes speaker identification (SID) logic that is configured to identify the identity of a near-end speaker. Knowledge of the identity of the near-end speaker is then used to improve the performance of one or more uplink speech processing algorithms implemented on the communication device.
摘要:
Methods, systems, and apparatuses are described for performing speaker-identification-assisted speech processing in an uplink path of a communication device. In accordance with certain embodiments, a communication device includes speaker identification (SID) logic that is configured to identify the identity of a near-end speaker. Knowledge of the identity of the near-end speaker is then used to improve the performance of one or more uplink speech processing algorithms implemented on the communication device.
摘要:
Systems, devices, and methods are described for providing loudspeaker protection. An upstream loudspeaker model estimation component receives sensed electrical characteristics of a loudspeaker and generates an impedance model from which an excursion model, and associated parameters, of the loudspeaker as well as a gain change parameter may be generated. The impedance components are fitted to features of an estimated impedance, based on the voltage and current sense data, to generate the estimated impedance model of the loudspeaker by combining the fitted impedance components. The resulting estimated impedance model is converted to an excursion model of the loudspeaker. A downstream audio signal processing component utilizes the excursion model, or parameters thereof, to limit a predicted excursion of the loudspeaker. Processed audio signals associated with the limited excursion are subject to distortion suppression prior to releasing the output audio signals for playback on the loudspeaker.
摘要:
Systems, devices, and methods are described for providing loudspeaker protection. An upstream loudspeaker model estimation component receives sensed electrical characteristics of a loudspeaker, estimates the impedance of the loudspeaker, fits an impedance model to the estimated impedance, and generates an excursion model of the loudspeaker and a gain change parameter from the estimated parameters of the impedance model. A downstream audio signal processing component utilizes the gain change parameter and the excursion model, or parameters thereof, to constrain the temperature of a voice coil of the loudspeaker and to limit a predicted excursion of the loudspeaker. The downstream audio signal processing component also utilizes processed signals associated with the constrained temperature and the limited excursion to suppress unwanted distortion for an output audio signal to be played back by the loudspeaker.