Abstract:
A femoral prosthesis. The femoral prosthesis includes an implant body having a proximal end and a distal end and a shoulder at the proximal end, the shoulder being structured and dimensioned for a tight press fit into the neck of a femur. The implant body includes a trunk at the distal end, the trunk having a wedge formed by a tapered portion extending in the direction of the distal end of the implant body. The implant body also includes a medial column extending from the shoulder toward the distal end and a lateral column extending from the shoulder toward the distal end. The wedge, the medial column, and the lateral column to provide multi-planar stability for the implant body and surface area for fixation of the implant body.
Abstract:
A femoral prosthesis. The femoral prosthesis includes an implant body having a proximal end and a distal end and a shoulder at the proximal end, the shoulder being structured and dimensioned for a tight press fit into the neck of a femur. The implant body includes a trunk at the distal end, the trunk having a wedge formed by a tapered portion extending in the direction of the distal end of the implant body. The implant body also includes a medial column extending from the shoulder toward the distal end and a lateral column extending from the shoulder toward the distal end. The wedge, the medial column, and the lateral column to provide multi-planar stability for the implant body and surface area for fixation of the implant body.
Abstract:
A femoral prosthesis. The femoral prosthesis includes an implant body having a proximal end and a distal end and a shoulder at the proximal end, the shoulder being structured and dimensioned for a tight press fit into the neck of a femur. The implant body includes a trunk at the distal end, the trunk having a wedge formed by a tapered portion extending in the direction of the distal end of the implant body. The implant body also includes a medial column extending from the shoulder toward the distal end and a lateral column extending from the shoulder toward the distal end. The wedge, the medial column, and the lateral column to provide multi-planar stability for the implant body and surface area for fixation of the implant body.
Abstract:
A femoral prosthesis. The femoral prosthesis includes an implant body having a proximal end and a distal end and a shoulder at the proximal end, the shoulder being structured and dimensioned for a tight press fit into the neck of a femur. The implant body includes a trunk at the distal end, the trunk having a wedge formed by a tapered portion extending in the direction of the distal end of the implant body. The implant body also includes a medial column extending from the shoulder toward the distal end and a lateral column extending from the shoulder toward the distal end. The wedge, the medial column, and the lateral column to provide multi-planar stability for the implant body and surface area for fixation of the implant body.
Abstract:
A tibial component for use in conjunction with a knee replacement surgery. An inferior surface of the tibial component may be concave to thereby improve bonding between the tibial component and a tibia. The tibial component may produce low stress in the cement mantle during in-vivo loading. A stem extending from the inferior surface of the tibial component may include an anterior curvature to facilitate the use of minimally evasive surgical techniques. The stem may further include medial-lateral wing portions with a posterior curvature to provide improved support.
Abstract:
The disclosure relates to revision hip surgery or total hip arthroplasty situations in which it is difficult for a surgeon to secure or fix an acetabular cup or shell to the bone due, for whatever reason, to bone loss or other bone deficiency. The system may comprise a plurality of fasteners and an acetabular cup or shell having a plurality of openings to thereby allow the plurality of fasteners to be inserted at diverging angles to create multiple fixation points to distribute load and secure the shell to available bone. The system may also include a bearing insert for receiving a femoral head component and a plurality of spacers for creating a cement mantle.
Abstract:
A tibial component for use in conjunction with a knee replacement surgery. An inferior surface of the tibial component may be concave to thereby improve bonding between the tibial component and a tibia. The tibial component may produce low stress in the cement mantle during in-vivo loading. A stem extending from the inferior surface of the tibial component may include an anterior curvature to facilitate the use of minimally evasive surgical techniques. The stem may further include medial-lateral wing portions with a posterior curvature to provide improved support.
Abstract:
An orthopedic device is disclosed for restoring the normal or natural joint mechanics in, for example, a hip joint. The device includes a first component, such as an acetabular component in a hip implant, that includes a convex articulation surface and a second component, such as a femoral component in a hip implant, that includes a concave articulation surface. It will be appreciated that the convex articulation surface of the device disclosed herein articulates with the concave articulation surface in a mating engagement that may be reversed with respect to the traditional hip implant, in which the concave articulation surface is part of the acetabular component and the convex articulation surface is part of the femoral component.
Abstract:
A cementless femoral hip stem component includes an elongate stem having opposing distal and proximal sections. The proximal section includes a conical stem surface which terminates in a proximal end. A collar having a conical undersurface extends laterally outward from the proximal end of the stem. The proximal conical stem portion and the conical undersurface of the collar cooperatively define a unitary double-cone contact surface to allow the collar to subsidably engage with external cortical bone in tandem with the proximal conical stem subsidably engaging with the internal femoral canal.
Abstract:
A prosthetic femoral implant for use in a hip joint, as a ball and socket type joint, is disclosed. The implant includes a modular neck having a variety of adjustable positions to adjust the lateral offset and version angle of the femoral implant in relation to the femur. The implant further includes a broad, full collar for providing a compression force increasing the interdigitation between the interface of the bone, implant and cement. The implant also includes a stem having a depression having a roughened porous surface for resisting the increased torsional loads placed on the implant due to the increased lateral offset and version angle. The stem further comprises three distinct zones, each zone having its own roughened surface creating a tripartite differential porosity.