摘要:
Heat-transfer fluids and lubricating fluids comprising deaggregated diamond nanoparticles are described herein. Also described are composites comprising deaggregated diamond nanoparticles, and methods of making such composites. Method of using deaggregated diamond nanoparticles, for example, to improve the properties of materials such as thermal conductivity and lubricity are also disclosed.
摘要:
Heat-transfer fluids and lubricating fluids comprising deaggregated diamond nanoparticles are described herein. Also described are composites comprising deaggregated diamond nanoparticles, and methods of making such composites. Method of using deaggregated diamond nanoparticles, for example, to improve the properties of materials such as thermal conductivity and lubricity are also disclosed.
摘要:
A thermionic energy converter includes an anode, a cathode spaced from the anode to define a gap therebetween and an operating environment of hydrogen wherein the anode and the cathode are disposed in the hydrogen operating environment so that molecular hydrogen is incorporated into the gap and the anode and the cathode are substantially exposed to the molecular hydrogen. Exposure of diamond samples to a hydrogen plasma reduces the resistance of the bulk diamond film. Hydrogen enhances electron transport through the bulk of the diamond and improves the thermionic emission current. Impregnation of a diamond electrode with hydrogen enhances bulk electron transport of the diamond due to hydrogen lying in the interstitial space between the carbon atoms. Hydrogen increases the bulk conductivity of diamonds films by interact with the diamond surface to form polarized C—H bonds reducing the electron affinity and in turn, reducing the work function. Exposure of diamond cathodes to a low energy hydrogen plasma drastically enhances thermionic emission current relative to as-grown diamond films by up to four orders of magnitude due to surface termination of diamond with hydrogen (i.e. hydrogenation of the diamond surface). Difficulty arises when attempting to utilize hydrogenated diamond electrodes for thermionic generators due to the hydrogen desorbing from the diamond surface following a predictable time-dependent Arrhenius behavior. When hydrogenated diamond cathodes are heated to temperatures above 600° C., the desorption of the performance-enhancing hydrogen begin to decrease with increasing temperature. The present invention provides means for preventing desorption of hydrogen from hydrogenated diamond films at elevated temperatures to overcome the performance-limiting effect of the desorbtion of the hydrogen from the diamond surface by filling the gap between the cathode and anode with molecular hydrogen at a selected specific pressure in equilibrium. The thermionic generator is sealed and pressure remains constant or steady-state so that molecular hydrogen is introduced into the gap at a selected flow rate to replace any molecular hydrogen exiting the gap at the same flow rate whereby a selected pressure and volume of hydrogen is maintained in the gap throughout the process.
摘要:
A thermionic energy converter includes an anode, a cathode spaced from the anode to define a gap therebetween and an operating environment of hydrogen wherein the anode and the cathode are disposed in the hydrogen operating environment so that molecular hydrogen is incorporated into the gap and the anode and the cathode are substantially exposed to the molecular hydrogen. Exposure of diamond samples to a hydrogen plasma reduces the resistance of the bulk diamond film. Hydrogen enhances electron transport through the bulk of the diamond and improves the thermionic emission current. Impregnation of a diamond electrode with hydrogen enhances bulk electron transport of the diamond due to hydrogen lying in the interstitial space between the carbon atoms. Hydrogen increases the bulk conductivity of diamonds films by interact with the diamond surface to form polarized C—H bonds reducing the electron affinity and in turn, reducing the work function. Exposure of diamond cathodes to a low energy hydrogen plasma drastically enhances thermionic emission current relative to as-grown diamond films by up to four orders of magnitude due to surface termination of diamond with hydrogen (i.e. hydrogenation of the diamond surface). Difficulty arises when attempting to utilize hydrogenated diamond electrodes for thermionic generators due to the hydrogen desorbing from the diamond surface following a predictable time-dependent Arrhenius behavior. When hydrogenated diamond cathodes are heated to temperatures above 600° C., the desorption of the performance-enhancing hydrogen begin to decrease with increasing temperature. The present invention provides means for preventing desorption of hydrogen from hydrogenated diamond films at elevated temperatures to overcome the performance-limiting effect of the desorbtion of the hydrogen from the diamond surface by filling the gap between the cathode and anode with molecular hydrogen at a selected specific pressure in equilibrium. The thermionic generator is sealed and pressure remains constant or steady-state so that molecular hydrogen is introduced into the gap at a selected flow rate to replace any molecular hydrogen exiting the gap at the same flow rate whereby a selected pressure and volume of hydrogen is maintained in the gap throughout the process.