Abstract:
A device for pre-emption in passive optical networks may include a first media access control (MAC) module configured to receive a first type of data traffic and transmit the first type of data traffic to a MAC merge module. The device may further include a second media access control (MAC) module configured to receive a second type of data traffic and transmit the second type of data traffic to the MAC merge module. The device may further include the MAC merge module configured to receive the first and second types of data traffic from the first and second MAC modules, respectively, and provide the first and second types of data traffic for transmission over a port. The MAC merge module may be configured to pre-empt the transmission of the first type of data traffic over the port in favor of the second type of data traffic.
Abstract:
Systems, devices, and methods of implementing 50 Gb/s Ethernet using serializer/deserializer lanes are disclosed. One such device includes circuitry operable to provide a media access control (MAC) interface. The MAC interface is associated with a port having a 50 Gb/s link rate. The device also includes circuitry operable to generate Ethernet frames from data received at the MAC interface and circuitry operable to distribute the Ethernet frames across a group of serial/deserializer (SERDES) lanes associated with the port, the group having size N. The device also includes circuitry operable to transmit the distributed Ethernet frames on each of the SERDES lanes at a 50/N Gb/s rate.