Abstract:
A low-power reconfigurable voltage-mode digital-to-analog converter (DAC) driver circuit includes a first and a second supply voltage and a number of DAC units. Each DAC unit is coupled to a respective bit of a digital input. The DAC units are configured to maintain a constant output impedance. Each DAC unit includes one or more complementary switch pairs that couple first nodes of one or more respective impedances to one of the first or the second supply voltage, based on the respective bit of the digital input. Second nodes of the one or more respective impedances are coupled to an output node.
Abstract:
A low-power reconfigurable voltage-mode digital-to-analog converter (DAC) driver circuit includes a first and a second supply voltage and a number of DAC units. Each DAC unit is coupled to a respective bit of a digital input. The DAC units are configured to maintain a constant output impedance. Each DAC unit includes one or more complementary switch pairs that couple first nodes of one or more respective impedances to one of the first or the second supply voltage, based on the respective bit of the digital input. Second nodes of the one or more respective impedances are coupled to an output node.
Abstract:
A low-power high-swing current-mode logic (CML) driver circuit includes a first differential-pair and a second differential-pair. The first differential-pair includes first transistors, and is coupled to a first voltage supply that supplies a first voltage. The second differential-pair includes second transistors, and a common node of the second differential-pair is coupled to a second voltage supply. The second voltage supply supplies a second voltage that is higher than the first voltage. Control terminals of the first transistors are coupled to control terminals of the second transistors to form input nodes of the driver circuit.